首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
Grain boundary conductivities are determined by complex impedance measurements (1–106 Hz) on high-purity ceramics prepared by the alkoxide synthesis and on less pure ceramics obtained from a commercial powder. The grain size was varied systematically in the region 0.36–55 μm. The grain boundary conductivity is strongly influenced by the grain size, impurities and cooling procedure. The grain boundary conductivity increases linearly with the grain size for small grain sizes (0.3 to 2–4 μm) and is constant for larger grain sizes. The calculated specific conductivity of the grain boundary for pure materials is about 100 times smaller than that of the bulk. The grain boundary thickness was estimated to be 5.4 nm. The activation energy of the grain boundary conductivity is 7 kJ mole?1 higher than of the bulk.  相似文献   

2.
Single-phase multiferroic BiFeO3 (BFO) powders were prepared by hydrothermal microwave synthesis and dense BiFeO3 ceramics were fabricated for the first time by the low-temperature high-pressure (LTHP) sintering technique. Effect of sintering temperature ranging from 400 to 800 °C (3 min and 10 min) and pressure of 3–8 GPa on structural, microstructural, electric and magnetic properties were investigated through X-ray diffraction, scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), density and magnetic measurements. The results highlighted that LTHP sintering method, thanks to the high pressure involved, requires lower temperature and shorter time than other techniques, avoiding BiFeO3 phase degradation. SEM images show that for short experimental time (t = 3 min) the average grain size of the sintered samples was approximately the same size of raw powder. Extending the sintering time up to 10 min the grain growth phenomena occurred. Moreover the results indicate that the best obtained density value was around 98% of theoretical density. The dielectric behavior of BiFeO3 ceramics was not significantly influenced by the LTHP sintering conditions. Magnetic measurements showed that ceramic BiFeO3 is weakly ferromagnetic at room temperature.  相似文献   

3.
Bulk specimens of Ce0.9Gd0.1O2-δ prepared with powders within a range of specific surface area were sintered in oxidizing, inert, and reducing atmospheres. The aim of this work is to investigate the effects of the sintering atmosphere on the microstructure and grain and grain boundary conductivities of the solid electrolyte. The lattice parameter determined by Rietveld refinement is 0.5420(1) nm, and the microstrain was found negligible in the powder materials. Specimens sintered in the Ar/4 % H2 mixture display larger average grain sizes independent on the particle size of the starting powders. The grain and grain boundary conductivities of specimens sintered under reducing atmosphere are remarkably lower than those sintered under oxidizing and inert atmospheres. The activation energy (~0.90 eV) for total electrical conductivity remains unchanged with both the initial particle size and the sintering atmosphere.  相似文献   

4.
NASICON dense ceramics were obtained from solid state reaction between SiO2, Na3PO4·12H2O and two different types of zirconia: monoclinic ZrO2 and the yttria-doped tetragonal phase (ZrO2)0.97(Y2O3)0.03. Higher temperatures were needed to obtain dense samples of the yttrium free composition (1265 °C). The electrical conductivity, at room temperature, of the yttria-doped samples sintered at 1230 °C (0.20 S/m) is significantly higher than the value obtained with the material prepared from pure ZrO2. The impedance spectra show that the differences in conductivity are predominantly due to the higher grain boundary resistance of the undoped ceramics, probably due to formation of monoclinic zirconia and glassy phases along the grain boundary. Further improvement of the electrical conductivity could be achieved after optimization of the grain size and density of grain boundaries. A maximum conductivity value of about 0.27 S/m at room temperature was obtained with the yttria-doped samples sintered at 1220 °C for 40 h. Yttria-doped and undoped ceramics were tested as Na+ potentiometric sensors. The detection limit of the yttria-doped sample (10−4 mol/l) was one order of magnitude lower than the obtained with the undoped material. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16 – 22, 2001.  相似文献   

5.
Two similar sets of Zn1-xBixO ceramic varistors with various x values (0.00?≤x≤?0.20) have been prepared by using Bi2O3 additions with two different sizes. In the first set, Bi2O3 nanoparticles (≈200 nm) were used, while Bi2O3 microparticles (≈5 μm) were used in the second set. It was found that addition of Bi up to 5 % for both sets did not affect the wurtzite-type hexagonal structure of ZnO, but with increasing Bi above 5 %, some unknown lines were clearly observed in XRD spectra. The grain sizes are increased in both sets with increasing Bi content up to 2.5 %, followed by a decrease with further increase of Bi up to 20 %, and their values for microparticle additions were larger than that of the sets containing nanoparticle additions. Two nonlinear regions were formed in the I–V curves of ZnO due to Bi2O3 nanoparticle additions above 5 %. However, this behavior was completely absent in the samples containing Bi2O3 microparticles. Moreover, the breakdown field and nonlinear coefficient decreased with Bi2O3 addition up to 5 % for both sets, followed by an increase with further increase of Bi up to 20 %, and their values were higher for nanoparticle additions than that of microparticles. A reverse behavior was recorded for the electrical conductivity. The results have been discussed in terms of Bi2O3 nanosize grains which may be localized at the grain boundaries of ZnO ceramics.  相似文献   

6.
Powders of BaYxCe1 ? xO3 ? δ (x = 0, 0.1 and 0.15) with specific surface area of 6–8 m2g? 1 (BET equivalent particle size of 130–160 nm) were prepared by a modified solid-state route using nanocrystalline BaCO3 and CeO2 raw materials. These powders showed excellent densification at relatively low temperatures. Dense (96–97% relative density) ceramics with submicron grain size (0–4–0.6 µm) were obtained after sintering at 1250–1280 °C. Ceramics sintered at 1450 °C revealed only a moderate grain growth (grain size ≤ 2 µm), uniform microstructure and very high density (≥ 98%). The total conductivity of the submicron ceramics at 600 °C was comparable with the reference values reported in the literature, meaning that the high number of grain boundaries was not a limiting factor. On lowering temperature, the contribution of the blocking grain boundaries becomes progressively more important and the conductivity decreases in comparison to coarse-grained ceramics. Microscopic conductivities of grain interior and grain boundary are the same irrespective of grain size meaning that the different macroscopic behaviour is only determined by a geometric factor (a trivial size effect).  相似文献   

7.
Redox stability of cubic nanostructured zirconia ceramics, free of any secondary phases, has been investigated experimentally as a function of grain size. Pure 8 mol% Y2O3-doped ZrO2 powders were synthesized by a spray pyrolysis process and then compacted by uniaxial pressing, followed by cold isostatic pressing. Using appropriate thermal treatments, average grain sizes ranging from 25 to 242 nm and relative densities from 71% up to 98% were obtained. An electrochemical characterization was performed with comparison on ceramics of 3.2 and 7.6 μm and 98% of theoretical density starting from commercial YSZ powder.  相似文献   

8.
《Solid State Ionics》2006,177(13-14):1227-1235
Both doped zirconia and ceria have been widely recognized as promising electrolytes in solid oxide fuel cells (SOFC). Total conductivity is an important parameter to evaluate solid electrolytes. It is well know that the contribution to the total conductivity by grain boundaries is especially pronounced for SiO2-contaminated electrolytes. In this study, we report on the different conduction behaviors of grain boundaries (GB) found in SiO2-containing (impure) 8YSZ (8 mol% Y2O3-doped ZrO2) and CGO20 (10 mol% Gd2O3-doped CeO2) ceramics. In the grain size range (∼ 0.5–10 μm) studied, the GB conductivity of impure CGO20 ceramics constantly decreases with increasing grain size, in contrast to that observed in impure 8YSZ electrolytes whose GB conductivity increases almost linearly with grain size. It is also found that the variation in GB conductivity versus grain size is different from case to case, depending on the sintering/annealing conditions used to fabricate the ceramics. Two mechanisms were proposed to explain the GB behaviors of the impure 8YSZ and CGO20 ceramics. For doped ceria, the GB phases are supposed to be inert, which do not react with or dissolve into the matrix. Increasing sintering temperature leads to not only grain growth but also change in viscosity and wetting nature of the GB phases. These two factors promote further propagation of the GB phases along the grain boundaries, leading to an increased GB coverage fraction. For doped zirconia, however, the major factor dominating the GB conduction is the further dissolution of SiO2 into zirconia lattice as a result of increase in sintering temperature or/and time. In addition, we will also evaluate and discuss the validities of the three models that are widely used to analyze the GB conduction in solid electrolytes.  相似文献   

9.
Poly(m-toluidine) (PmT), a derivative of polyaniline, has been prepared by chemical oxidation polymerization method. The synthesized PmT powder is blended with plasticized polyvinyl chloride (PVC) to achieve 20 μm thick self-supported films. These films were irradiated with 60 MeV Si5+ ions at three different fluences whose S e (electronic energy loss) value is found to be 1.988×103 KeV/μ m, an order of magnitude larger than 60 MeV C5+ (2.958×102 KeV/μ m). Fourier transform infrared (FTIR), X-ray diffraction (XRD) and ultraviolet-visible (UV) absorption studies of pre- and post-irradiated films of PmT–PVC blends were carried out to study the heavy ion irradiation effects on these polymer blends. An overall change in the structure of the polymer blend has been observed from FTIR studies. UV-visible spectra show a decrease in the optical band gap (E g) and an increase in cluster size with increasing fluence. An effort is made to compare these results with our earlier studies. We found that the variation in S e plays an important role in the structural and optical properties of PmT–PVC blends.  相似文献   

10.
Bi0.5Na0.5TiO3 (BNT)-doped BaFe0.5Nb0.5O3 (BFN) ceramics were synthesized by a two-step solid-state reaction. Temperature dependence of dielectric properties measured at different frequencies was investigated over broad temperature and frequency ranges. Impedance spectroscopy and universal dielectric response were employed to study the relaxation behavior and conductivity mechanism of the ceramics in a frequency range from 40 Hz to 100 MHz and a temperature range from 300 K to 800 K. The complex plane impedance data revealed the bulk and grain boundary contributions toward conductivity processes in the form of semicircular arcs. The high-temperature conductivity of ceramics is attributable to thermally activated second ionized oxygen vacancy.  相似文献   

11.
For the first time, belt-like V6O13 precursor was synthesized via a simple solvothermal method. Rod-like Ag-doped V6O13 was successfully synthesized by this method followed by heating at 350 °C. Both crystal domain size, electronic conductivity, and the lithium diffusion coefficient of the Ag-doped V6O13 samples are influenced by the added amount of AgNO3. When the amount of AgNO3 is 0.008 g, the product is rod-like particles, which are 0.1–0.3 μm wide and 1–2 μm long, and exhibits the best electrochemical performance. The enhanced electrochemical performance originates from its higher total conductivity, higher lithium diffusion coefficient, and better structural reversibility.  相似文献   

12.
Nano-crystalline Bi0.9Pr0.1FeO3 (BPFO) ceramics have been synthesized by a sol–gel technique. The Rietveld refinement of the room temperature powder X-ray diffraction pattern confirms that the BPFO crystallizes in the rhombohedral R3c space group symmetry. SEM image of the sintered BPFO ceramic shows particles with same shape and fine grain morphology with the average grain size of 53±12 nm. The electrical properties of the ceramic are analysed by impedance spectroscopy. Grain and grain-boundary effect is observed in the material at lower temperature range which has been confirmed by electric modulus formalism. The ac conductivity spectrum obeys the Johnscher's power law. The activation energy calculated from dc conductivity is found to be 0.373 eV, which represents the conduction of small polaron over barrier between two sites of the lattice.  相似文献   

13.
In this study, the new type electrolyte (Yb2O3)x(Dy2O3)y(Bi2O3)1-x-y ternary compounds were synthesized with different stoichiometric ratios by the solid-state reaction method at different annealing treatment and also their microstructural and electrical properties were analysed. X-ray powder diffraction results showed that the high temperature δ-phase of pure monoclinic Bi2O3 has been synthesized by doping of Yb2O3. Grain size and grain form of pellet formed samples was compared from their surface images taken by the scanning electron microscopy. The grain size has been varying between ~17–37 µm, and degrading with the increasing dopant concentrations. The relationships between the structural parameters (e.g. lattice parameters, crystallite size and the lattice microstrain) and structural properties (e.g. ionic radii of dopant cations and heat treatment procedure) were particularly discussed. Total conductivity values were calculated by Nyquistic complex impedance plot. Impedance measurement revelaed that total conductivity values of the samples increase with the increasing Yb dopant ratio. The activation energies calculated by the Arrhenius approach are measured at around 1?eV. In addition, activation energies and pre-exponential terms decrease with the increasing Yb cation dopant rate for the same ambient temperature.  相似文献   

14.
In order to study the influence of grain size and lattice strain on the thermal conductivity of nanocrystalline (NC) materials, both experimental and theoretical studies were carried out on NC copper. The NC copper samples were prepared by hot isostatic pressing of nano-sized powder particles with mean grain size of 30 nm. The thermal behaviors of the samples were measured to be 175.63–233.37 W (m K)?1 by using a laser method at 300 K, which is 45.6 and 60.6 % of the coarse-grained copper, respectively. The average grain size lies in the range of 56–187 nm, and the lattice strain is in the range of ?0.21 to ?0.45 % (in the direction of 111) and ?0.09 to 0.92 % (in the direction of 200). In addition, a modified Kapitza resistance model was developed to study the thermal transport in NC copper. The theoretical calculations based on the presented theoretical model were in good agreement with our experimental results, and it demonstrated that the thermal conductivity of NC materials show obvious size effect. It is also evident that the decrease in the thermal conductivity of NC material can be mainly attributed to the nano-size effect rather than the lattice strain effect.  相似文献   

15.
Lead zirconate titanate (PZT) nano-powder was prepared by a triol sol–gel process. X-ray diffraction and transmission electron microscopy results showed that as-synthesized amorphous powder started to crystallize at the calcination temperature above 500 °C. The crystalline powder was formed into pellets and sintered at temperatures between 900 and 1300 °C. Co-existence of tetragonal and rhombohedral phase was observed in all ceramics. Microstructural investigation of PZT ceramics showed that uniform grain size distribution with average grain size of ∼0.8–2.5 μm were received with sintering temperature up to 1200 °C. Further increasing the temperature caused abnormal grain growth with the grain as large as 13.5 μm. An attempt to optimize densification with uniform grain size distribution was also performed by varying heating rate and holding time during sintering. It was found that dense (∼97%) sol–gel derived PZT ceramic with uniform microstructure was achieved at 1100 °C with a heating rate of 5 °C min−1 and 6 h dwell time.  相似文献   

16.
《Current Applied Physics》2014,14(9):1312-1317
In this work, BaTiO3 ceramics modified with 0.5 mol% Au nanoparticles were fabricated by using a combination of the solid-state reaction and pressureless-sintering techniques. By employing a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Archimedes principle and dielectric measurement techniques, it was found that no phases other than tetragonal BaTiO3 were observed in all ceramics. In contrast to the tetragonality, the relative density, grain size and maximum dielectric constant at Curie temperature of the ceramics were found to increase with sintering temperature. In addition, it has been found that, under suitable sintering temperature, dense perovskite nanogold modified BaTiO3 ceramics with fine-grained microstructure (∼1 μm) and better dielectric properties than those of gold-free ceramics can be produced.  相似文献   

17.
Alumina micro- and nanopowders with the particle size from 200 μm to 40 nm synthesized by the sol-gel method are studied. The particle size dependence of γ-Al2O3→α-Al2O3 phase transformation is studied by differential thermal analysis, X-ray diffraction method, and transmission electron microscopy. X-ray diffraction data show that for alumina nanoparticles γ-Al2O3→θ-Al2O3 phase transformation occurs at 900°C, and for micro-particles it occurs in the temperature range 1150–1200°C. The alumina ceramics produced of alumina nanoparticles is shown to have higher flexural strength under three-point bending than the ceramics produced of micro-particles. The obtained results demonstrate that alumina particle size reduction stabilizes the formation of α-Al2O3 at lower temperatures, due to which the grain growth rate decreases and the flexural strength of monolithic oxide ceramics increases.  相似文献   

18.
L.P. Teo 《Ionics》2017,23(2):309-317
In this work, Li2SnO3 has been synthesized by the sol–gel method using acetates of lithium and tin. Thermogravimetric analysis (TGA) has been applied to the precursor of Li2SnO3 to determine the suitable calcination temperature. The formation of the compound calcined at 800 °C for 9 h has been confirmed by X-ray diffraction (XRD) analysis. The Li2SnO3 is then pelletized and electrically characterized by using electrochemical impedance spectroscopy (EIS) in the frequency range from 50 Hz to 1 MHz. The complex impedance spectra clearly show the dominating presence of the grain boundary effect on electrical properties whereas the complex modulus plots reveal two semicircles which are due to the grain (bulk) and grain boundary. The spectra of imaginary parts of both impedance and modulus versus frequency show the existence of peaks with the modulus plots exhibiting two peaks that are ascribed to the grain and grain boundary of the material. The peak maximum shifts to higher frequency with an increase in temperature and the broad nature of the peaks indicates the non-Debye nature of Li2SnO3. The activation energy associated with the dielectric relaxation obtained from the electrical impedance spectra is 0.67 eV. From the electric modulus spectra, the activation energies related to conductivity relaxation in the grain and grain boundary of Li2SnO3 are 0.59 and 0.69 eV, respectively. The conductivity–temperature relationship is thermally assisted and obeys the Arrhenius rule with the activation energy of 0.66 eV. The conduction mechanism of Li2SnO3 is via hopping.  相似文献   

19.
The structural, optical and electrical properties of 60 MeV C5+ ion-irradiated poly(3-methylthiophene) (P3MT) synthesized by the chemical oxidation polymerization method have been studied. The P3MT powder was dissolved in chloroform (CHCl3), and thin films of thickness 2 μm were prepared on glass and Si substrates. The polymerization was confirmed by the FTIR spectrum. Then films were irradiated by 60 MeV C5+ ions at different fluences. FTIR spectra show methyl group evolution after irradiation. The optical band gap decreases slightly after irradiation and the DC conductivity increases by about one order of magnitude after irradiation at the highest fluence. The role of S e has also been discussed when compared with 60 MeV Si5+ ion irradiation of P3MT. The morphological changes are observed using SEM.  相似文献   

20.
《Solid State Ionics》2006,177(26-32):2503-2507
The temperature and the oxygen partial pressure dependences of the electron and hole conductivities were measured by the dc polarization method using a Hebb–Wagner's ion blocking cell for Gd0.2Ce0.8O1.9 polycrystalline bodies with grain size of 0.5 μm prepared by sintering of nano-sized powder. A significant enrichment of gadolinium was observed in the vicinity of the grain boundary by TEM/EDS analyses. The electron conductivity were comparable with those of conventional Gd0.2Ce0.8O1.9 polycrystalline body with grain size of 2 μm, and it followed p(O2) 1/4 dependence at temperatures T = 973–1273 K. However, the observed hole conductivity was higher than that of conventional Gd0.2Ce0.8O1.9, and it did not follow p(O2)1/4 dependence. This anomalous p(O2) dependence disappeared after the sample was treated at T = 1773 K for 38 h and grain size was enlarged to 2–10 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号