首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
功率超声在废水处理中的应用   总被引:5,自引:0,他引:5       下载免费PDF全文
熊宜栋 《应用声学》2002,21(4):33-35,32
采用不同强度和频率的超声波,对几种生物难降解的有毒污染物(苯胺,硝基苯)废水进行超声处理,实验表明,降解效果主要取决于超声波在反应液中的声强及处理时间,同时,若辅以通氧气或加入催化剂,处理效果更好,这就为设计相应的超声废水处理设备提供了实验基础。  相似文献   

2.
超声降解处理水体污染物的研究状况与发展   总被引:18,自引:0,他引:18  
吴胜举 《物理》2001,30(12):782-786
利用超声产生的空化效应来降解水体中的污染物,是近几年来国外研究者关注的热点领域之一。文章就超声在污染水体降解的原理、理论、降解效果以及主要的影响因素作扼要的综述介绍,对存在的问题和发展的趋势提出见解和看法。  相似文献   

3.
超声-生物法在废水处理中的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
超声-生物法作为一种新的污染治理工艺,正日益受到人们的重视。本文介绍了声解机理及主要的影响因素,综述了超声-生物法(厌氧、好氧及厌氧加好氧)在废水处理中的研究进展。  相似文献   

4.
本文介绍了超声在玉石加工业中的应用及在生产中所取得的经济效益。根据多年实践经验,总结出超声加工中的技术与工艺问题,并认为这是保障超声加工能高效率工作的关键。  相似文献   

5.
超声波在多糖降解及提取中的应用   总被引:9,自引:0,他引:9       下载免费PDF全文
本文支综合介绍了超声波在多糖降解和提取中应用的研究进展.着重对超声波在淀粉,壳多糖,细菌多糖的降解和真菌多糖的提取中的应用作了较详细的阐述.  相似文献   

6.
本文以硝基苯模拟废水为研究对象,探讨了超声波与电化学协同作用降解硝基苯的实验情况。考察了处理时间、处理温度、硝基苯初始浓度、pH值、电解电压等因素对硝基苯降解率的影响。实验结果表明:随着作用时间增加,硝基苯的降解率升高;温度高于40℃时,硝基苯的降解率随温度的升高而降低,低于40℃时,硝基苯的降解率随温度的升高而增大;硝基苯的降解率随电压的升高而增大;酸性条件有利于硝基苯的降解;硝基苯初始浓度越大降解率越高。  相似文献   

7.
超声空化状态对苯酚降解的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
给出不同空化状态下超声波降解苯酚溶液的实验结果,比较了相应的声压级频谱和合成声强。研究了苯酚溶液的浓度,二阶铁盐,超声辐射时间对苯酚降解率的影响,讨论了不同空化状态下的声压级频谱特征。  相似文献   

8.
荧光分析法在环境有机污染物检测中的应用   总被引:1,自引:0,他引:1  
高霞  周凌云  席景砖 《光谱实验室》2011,28(4):2008-2016
综述了近十年来荧光分析法在环境有机污染物检测中的应用,主要介绍了国内的应用情况.依据检测时所采用的方法如直接荧光分析法、间接荧光分析法及其他的一些荧光分析方法分别进行归纳总结.  相似文献   

9.
灭多威的超声降解研究   总被引:12,自引:0,他引:12       下载免费PDF全文
研究了灭多威模拟废水在超声作用下的降解反应动力学、降解产物、降解途径、以及影响降解速率的因素等问题.结果表明,灭多威经超声作用35min,可被完全转换为无机物,其降解过程为假一级反应;浓度增加时,降解减慢;Fe  相似文献   

10.
人工神经网络在超声无损检测中的应用   总被引:2,自引:1,他引:2       下载免费PDF全文
人工神经网络对于超声无损检测的发展具有重要的意义,本文对国内外人工神经网络在超声无损检测中应用研究做了较为详细的介绍和分析,指出人工神经网络是实现超声无损检测测定量化的有效途径。  相似文献   

11.
Recently, application of ultrasound has attracted considerable interest as an alternative approach to traditional methods. In this study, response surface methodology (RSM) was used to optimize the conditions for grape mash treatment by ultrasound and by combination of ultrasound and enzyme. The results indicated that optimal conditions were the temperature of 74 °C and the time of 13 min for sonication treatment; and were the enzyme concentration of 0.05% and the time of 10 min for combined ultrasound and enzyme treatment. In comparison with traditionally enzymatic treatment, sonication treatment increased extraction yield 3.4% and shortened treatment time over three times; combined ultrasound and enzyme treatment increased extraction yield slightly, only 2%, but shortened treatment time over four times. After sonication treatment, enzymatic treatment increased extraction yield 7.3% and total treatment time of this method was still shorter than that of traditionally enzymatic treatment method. Besides, application of ultrasound improved the grape juice quality because it increased contents of sugars, total acids and phenolics as well as color density of grape juice.  相似文献   

12.
Acoustic fields formed during operation of ultrasonic reactors with waveguides of following types: rod-type, cylindrical with rectangular protrusions and tubular were calculated and measured. The influence of distribution of acoustic fields arising from the operation of waveguide systems of three different types on the efficiency of ultrasonic activation of alumosilicic flocculant-coagulant and magnetite intended for water purification was investigated. It was shown that regardless of the equipment used on an industrial scale it is possible to reactivate the alumosilicic flocculant-coagulant even after the shelf life period of it passed, however in case of activation of magnetite the use of a bigger reactor in inefficient.In case of industrial scale processes, the choice of the correct reactor design is of significant importance, since it allows to reduce the required processing time, and, as a result, the energy consumption of the processes. The advantages of tubular waveguide systems include the possibility of processing large volumes of liquid. The high efficiency and uniformity of the excited ultrasonic fields can lead to reduction of operating costs. In case of smaller flows, the waveguide system with rectangular protrusions allowed to obtain better results.Our work illustrates the dependence of the success of a specific method on the choice of the waveguide and the size of the reactor during upscale.  相似文献   

13.
The present work demonstrates the significant role of ultrasound (US) in intensifying the efficacy of the combination with Fenton reagent and/or ozone for the treatment of real dye industry industrial effluent procured from the local industry. Initial part of the work focused on analysing the literature based on combination approaches of US with different oxidants applied for the treatment of real and simulated effluents focusing on the dyes. The work also provides guidelines for the selection of optimal operating parameters for maximizing the intensification of the degradation. The second part of the work presents an experimental study into combined approaches of ultrasound with ozone (O3) and Fenton’s reagent for treatment of real effluent. Under optimized conditions (100 W, 20 kHz and duty cycle of 70%), maximum COD reductions of 94.79% and 51% were observed using a combined approach of US + Fenton oxidation followed by lime treatment for the treatment of effluent-I and effluent-II respectively at H2O2 loading of 17.5 g/L, H2O2/Fe2+ ratio of 3, pH of 4, CaO dose of 1 g/L and an overall treatment time of 70 min. US + Fenton + O3 followed by lime was also applied for treatment under ozone loading of 1 g/h for the treatment of effluent-I and it was found that maximum COD reduction of 95.12% was obtained within 30 min of treatment time, indicating use of ozone did not result in significant value addition in terms of COD reduction but resulted in faster treatment. HC (inlet pressure: 4 bar) + Fenton + Lime scheme was successfully replicated on a pilot-scale resulting in maximum COD reduction of 57.65% within 70 min of treatment time. Overall, it has been concluded that the hybrid oxidative processes as US + Fenton followed by lime treatment is established as the best approach ensuring effective COD reduction at the same time obtaining final colourless/reusable effluent.  相似文献   

14.
Infant meat puree has an indispensable effect on the oral development and nutritional intake of infants. However, commercially available products have poor texture and relatively low digestibility. In this study, ultrasound (20 kHz and 200 W, 400 W, or 600 W) was applied to the pretreatment of raw meat for preparing infant meat puree for 15 min, 30 min, and 45 min. To assess the impact of ultrasound on infant meat puree, the viscosity, texture, water distribution, particle size and in vitro digestibility were determined. The results showed that, compared with control, viscosity and hardness of meat puree decreased and the texture was better in 400 W and 600 W groups. The content of immobilized water increased in comparison with the control. Ultrasound had no obvious effect on the digestibility of meat puree in gastric phase, but it increased the digestibility in intestinal phase with the highest digestibility (80.85%±3.33) in 600 W, 15 min group. Overall, the ultrasound parameters of 600 W for 15 min can be selected as the best condition to process infant meat puree. The findings provide a new perspective for the improvement of infant meat puree.  相似文献   

15.
The tenderizing effect of different ultrasound treatments on the characteristics of muscle fibers and connective tissue of chicken gizzard was investigated. It could be concluded that the shear force and muscle fiber diameter of the sample treated with ultrasound for 500 W/30 min were decreased by 27.1% and 26.2%, respectively, while the myofibril fragmentation index (MFI) was increased by 238.1% than the control. More importantly, the contents of hydroxylysine pyridinoline and lysine pyridinoline of the samples treated with ultrasound for 500 W/30 min were 23.1% and 40.5% lower than those of the control. Tenderizing effect of 500 W/30 min sample on thermal stability was verified from the decrease in transition temperature (Tmax) (10.7%) and enthalpy (ΔH) (21.7%) of collage compared with the control. In general, proper ultrasound treatment could effectively improve the tenderness of gizzard, and 500 W/30 min had the best tenderization effect. Therefore, the treatment of ultrasound was considered as a promising and efficient technique in meat processing, especially for the meat tenderization.  相似文献   

16.
ZnO/ZrO2 nanocomposites with different ZnO: ZrO2 molar ratios (2:1, 1:1, and 1:2)were prepared by sol gel approach under ultrasonic irradiation. For preparation of the nano-composites, the ZnO gel was directly incorporated into the ZrO2 gel at different molar ratios. The reaction mixture was stirred continuously for two days and then it was ultrasonoicated for 30 min. The filtrated composite gel was washed, and then calcinated at 300 °C in furnace for 3 h. X-ray powder diffraction patterns exhibited well-formed crystal structures and pure crystalline phases in the synthesized nanoparticles (NPs). The FT-IR analyses indicated that the positions of peaks related to Zn-O and Zr-O absorption bands did not change in nano-composites. In addition, FESEM images indicated uniform spherical morphology of the NPs. The highest photo-degradation performance of Congo red (as a model water pollutant) was obtained by 1:2molar ratio of ZrO2: ZnO in the nano-composite. The particle size and band gap were considered as important factors on nano-catalysts performance. Furthermore, the effects of ultrasonic irradiation, pH, and the concentration of pollutant in solution were investigated on photocatalytic performance of optimum nanocomposite.  相似文献   

17.
《Ultrasonics sonochemistry》2014,21(3):1206-1212
The decoloration of reactive dye C.I. Reactive Blue 19 (RB 19) using combined ultrasound with the Fenton process has been investigated. The effect of varying the concentrations of hydrogen peroxide and iron sulfate, initial pH, ultrasonic power, initial dye concentration and dissolved gas on the decoloration and degradation efficiencies was measured. Calibration of the ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using the Fricke dosimeter and degradations were carried out with a 20 kHz probe type transducer at 2, 4, 6 and 8 W cm−2 of acoustic intensity at 15, 25, 50 and 75 mg L−1 initial dye concentrations. First order rate kinetics was observed. It was found that while the degradation rate due to ultrasound alone was slow, sonication significantly accelerated the Fenton reaction. While the results were similar to those reported for other dyes, the effects occurred at lower concentrations. The rate and extent of decoloration of RB 19 increased with rising hydrogen peroxide concentration, ultrasonic powers and iron sulfate concentration but decreased with increasing dye concentration. An optimum pH value of pH = 3.5 was found. The rate of decoloration was higher when dissolved oxygen was present as compared with nitrogen and argon confirming the solution phase mechanism of the degradation.  相似文献   

18.
Pesticides have been the major contributors to the growth of agricultural productivity, but the wide spread use in the fields and discharge from the manufacturing industries have also contributed to environmental concerns. In the present work, degradation of triazophos (O,O-diethyl-O-(1-phenyl-1H-1,2,4-triazol-3-yl) phosphorothioate) as a model pollutant has been investigated using high volume continuous ultrasonic flow cell for the first time. Effect of power dissipation and initial pH on the extent of triazophos degradation using acoustic cavitation has been investigated initially. Under the optimized set of operating power dissipation and pH, effect of addition of hydrogen peroxide (ratio of C12H16N3O3PS (Triazophos):H2O2 over the range of 1:1–1:5), ozone (over the flow rate of 100–400 mg/h) and Fenton’s reagent (C12H16N3O3PS:FeSO4:H2O2 ratio over the range of 1:1:1–1:4:4) has been investigated as possible process intensification strategy. Combined operation of US with H2O2 and Ozone resulted in 48.6% and 54.6% triazophos degradation respectively whereas combination of US and Fenton’s reagent resulted in maximum degradation as 92.2% and also resulted in maximum COD removal as 88.5%. The study also focused on identification of intermediate products formed during the degradation as well as establishing the kinetic rate constants and the synergistic index for different approaches. The study has established that cavitation can be effectively used for triazophos degradation with significant intensification benefits based on the use of combination approach.  相似文献   

19.
Centella asiatica possess various health-promoting activities owing to its bioactive compounds such as triterpenes, flavonoids, and vitamins. Ultrasound treatment during the post-harvest process is a good strategy for eliciting secondary metabolite in plants. The present study investigated the effect of ultrasound treatment for different time durations on the bioactive compounds and biological activities of C. asiatica leaves. The leaves were treated with ultrasound for 5, 10, and 20 min. Ultrasound elicitation (especially for 10 min) markedly elevated the accumulation of stress markers, leading to enhanced phenolic-triggering enzyme activities. The accumulation of secondary metabolites and antioxidant activities were also significantly improved compared with that in untreated leaves. In addition, ultrasound-treated C. asiatica leaves protected myoblasts against H2O2-induced oxidative stress by regulating reactive oxygen species production, glutathione depletion, and lipid peroxidation. These findings indicate that elicitation using ultrasound can be a simple method for increasing functional compound production and enhancing biological activities in C. asiatica leaves.  相似文献   

20.
We have developed artificial neural network (ANN) based models for simulating two application examples of hydrodynamic cavitation (HC) namely, biomass pre-treatment to enhance biogas and degradation of organic pollutants in water. The first case reports data on influence of number of passes through HC reactor on bio-methane generation from bagasse. The second case reports data on influence of HC reactor scale on degradation of dichloroaniline (DCA). Similar to most of the HC based applications, the availability of experimental data for these two applications is rather limited. In this work a systematic methodology for developing ANN model is presented. The models were shown to describe the experimental data very well. The ANN models were then evaluated for their ability to interpolate and extrapolate. Despite the limited data, the ANN models were able to simulate and interpolate the data for two very different and complex HC applications very well. The extrapolated results of biomethane generation in terms of number of passes were consistent with the intuitive understanding. The extrapolated results in terms of elapsed time were however not consistent with the intuitive understanding. The ANN model was able to generate intuitively consistent extrapolated results for degradation of DCA in terms of number of passes as well as scale of HC reactor. The results will be useful for developing quantitative models of complex HC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号