首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nano-spinel ferrites synthesized via chemical co-precipitation method are small in size and have serious agglomeration phenomenon, which makes separation difficult in the subsequent process. Ni0.4Cu0.2Zn0.4Fe2O4 ferrites nanoparticles were synthesized via co-precipitation assisted with ultrasonic irradiation produced by ultrasonic cleaner with 20 kHz frequency using chlorinated salts and KOH as initial materials. The effects of ultrasonic power (0, 40 W, 60 W, 80 W) and reaction temperature on the microstructure and magnetic properties of ferrite nanoparticles were investigated. The structure analyses via XRD revealed the successful formation of pure (NiCuZn)Fe2O4 ferrites nanospinel without any impurity. The crystallites sizes were less than 40 nm and the lattice constant was near 8.39 Å. The TEM showed ferrite particle polygonal. M−H analyses performed the saturation magnetization and coercivity of ferrite nanoparticles obtained at the reaction temperature of 25℃ were higher than at 50℃ with same power. The samples exhibited the highest values of Ms 55.67 emu/g at 25℃ and 47.77 emu/g at 50℃ for 60 W and the lowest values of Hc 71.23 Oe at 25℃ for 40 W and 52.85 Oe at 50℃ for 60 W. The squareness ratio (SQR) were found to be lower than 0.5, which revealed the single magnetic domain nature (NiCuZn)Fe2O4 nanoparticles. All the outcomes show the ultrasonic irradiation has positive effects on improving the microstructure and increasing magnetic properties.  相似文献   

2.
We report the effects of heat treatment on Zn x Ni1???x Fe2O4 (x?= 0, 0.5 and 1.0) and MnFe2O4 ferrite nanoparticles. The as-prepared compounds were sintered from 400°C to 1100°C. Pure ZnFe2O4 (x?= 1.0) and MnFe2O4 could be obtained under low reaction temperature of 200°C. NiFe2O4 (x?= 0) and Zn0.5Ni0.5Fe2O4 (x?= 0.5) nanoferrites crystallized with single phase cubic spinel structure after annealing at 600°C. The single phase cubic spinel structure of these compounds was destroyed after annealing at temperature above 700°C. The magnetization measurements indicate superparamagnetic behavior of the nanosized compounds produced.  相似文献   

3.
Mn0.5Zn0.5Fe2O4 nanoparticles (10-30 nm) have been prepared via mechanochemical processing, using a mixture of two single-phase ferrites, MnFe2O4 and ZnFe2O4. SQUID measurements (field-cooled magnetization curves and hysteresis loops) were performed to follow the mechanically induced evolution of the MnFe2O4/ZnFe2O4 mixture submitted to the high-energy milling process. The resulting single MnZn nanoferrite phase was characterized by SQUID (M-H curve), Faraday balance (M-T curve) and transmission electron microscopy. The magnetic characteristics of the mechanosynthesized material were compared with those of bulk Mn0.5Zn0.5Fe2O4. It was found that the saturation magnetization of nanostructured Mn0.5Zn0.5Fe2O4 (87.2 emu/g) is lower than that of the bulk Mn0.5Zn0.5Fe2O4, but, the Néel temperature of the sample (583 K) is higher than that of the bulk Mn0.5Zn0.5Fe2O4.  相似文献   

4.
We have investigated the electromagnetic (EM) characteristics of CoxMn1−xFe2O4 spinel ferrite (where x=0.0, 0.5 and 1.0) nanoparticles (NPs)/paraffin nanocomposite material at 8-20 GHz. CoxMn1−xFe2O4 NPs have been synthesized by cetyltrimethylammonium assisted hydrothermal route using NaOH. A variation in complex dielectric permittivity and magnetic permeability at room temperature with frequency in the range 8-20 GHz has been studied. Particles showed phase purity and crystallinity in powder X-ray diffraction (XRD) analysis. At the same time, CoxMn1−xFe2O4 NPs demonstrated a spinel cubic structure from XRD results. A reflection loss of −46.60 dB was found at 10.5 GHz for an absorber thickness of 2 mm. CoxMn1−xFe2O4 may be attractive candidates for EM wave absorption materials.  相似文献   

5.
Spherical SiO2 nanoparticles (SSNs) have been inventively synthesized using the Stöber method with sonication at medium–high frequencies (80, 120, and 500 kHz), aiming to control SSN size and shorten reaction time. Compared to the conventional method, such sonication allowed the Stöber reaction complete in 20–60 min with a low molar ratio of NH4OH/tetraethyl orthosilicate (0.84). The hydrodynamic diameters of 63–117 nm of SSNs were obtained under sonication with 80, 120, and 500 kHz of ultrasonic frequencies. Moreover, the SSNs obtained were smaller at 120 kHz than at 80 kHz in a multi-frequencies ultrasonic reactor, and the SSN size decreased with increasing ultrasonic power at 20 °C, designating the sonochemical unique character, namely, the SSN-size control is associated with the number of microbubbles originated by sonication. With another 500 kHz ultrasonic bath, the optimal system temperature for producing smaller SSNs was proven to be 20 °C. Also, the SSN size decreased with increasing ultrasonic power. The smallest SSNs (63 nm, hydrodynamic diameter by QELS, or 21 nm by FESEM) were obtained by sonication at 207 W for 20 min at 20 °C. Furthermore, the SSN size increased slightly with increasing sonication time and volume, favoring the scale-up of SSNs preparation. The mechanisms of controlling the SSN size were further discussed by the radical’s role and effects of ammonia and ethanol concentration.  相似文献   

6.
Superparamagnetic MFe23+O4 (M=Mn2+, Fe2+ and Co2+) inverse spinel ferrite (ISF) nanoparticles with narrow size distribution having average diameters of 6-8 nm were synthesized by a diol reduction of organic metals and the surface was modified to be hydrophilic by coating with succimer. Magnetic resonance imaging (MRI) contrast enhancement by dipolar coupling defined interactions between the synthesized ISFs and protons in the bulk water was investigated with initial susceptibility, magnetization and anisotropy of the succimer-coated ISFs. The relaxivity ratios, r2/r1, for MnFe2O4, Fe3O4 and CoFe2O4 were measured to be 12.2, 23.1 and 62.3, respectively, which demonstrate the potential usefulness of these magnetic nanoparticles as T2 contrast agents for MRI.  相似文献   

7.
A series of Mn–Zn Ferrite nanoparticles (<15 nm) with formula MnxZn1−xFe2O4 (where x=0.00, 0.35, 0.50, 0.65) were successfully prepared by citrate-gel method at low temperature (400 °C). X-ray diffraction analysis confirmed the formation of single cubic spinel phase in these nanoparticles. The FESEM and TEM micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The fractions of Mn2+, Zn2+ and Fe3+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of different ferrite samples are estimated by room temperature micro-Raman spectroscopy. Low temperature Mossbauer measurement on Mn0.5Zn0.5Fe2O4 has reconfirmed the mixed spinel phase of these nanoparticles. Room temperature magnetization studies (PPMS) of Mn substituted samples showed superparamagnetic behavior. Manganese substitution for Zn in the ferrite caused the magnetization to increase from 04 to18 emu/g and Lande's g factor (estimated from ferromagnetic resonance measurement) from 2.02 to 2.12 when x was increased up to 0.50. The FMR has shown that higher Mn cationic substitution leads to increase in dipolar interaction and decrease in super exchange interaction. Thermomagnetic (MT) and magnetization (MH) measurements have shown that the increase in Mn concentration (up to x=0.50) enhances the spin ordering temperature up to 150 K (blocking temperature). Magnetocrystalline anisotropy in the nanoparticles was established by Mossbauer, ferromagnetic resonance and thermomagnetic measurements. The optimized substitution of manganese for zinc improves the magnetic properties and makes these nanoparticles a potential candidate for their applications in microwave region and biomedical field.  相似文献   

8.
Magnetic nanocomposites can be controlled and tailored to provide the desired mechanical, physical, chemical, and biomedical properties depending on the final applications. The coating of ferrite nanoparticles with polymers affords the possibility of minimizing agglomeration in large-scale commercial synthesis of nanocomposite materials. The process of coating not only provides effective encapsulation of individual nanoparticles, but also controls the growth in size, thus, yielding a better overall size distribution. In this paper, in-situ polymerization of aniline was carried out in different concentration of the ferrofluid with the aim to obtain agglomerate free nanocomposites. The role of the ferrite concentration was investigated by the spectral, morphological, conductivity, and magnetic properties of Fe3O4/polyaniline (PANI) nanocomposites. XRD revealed the presence of spinel phase of Fe3O4 and the particle size was calculated to be 14.3 nm. Spectral analysis confirmed the formation of PANI encapsulated Fe3O4 nanocomposite. Conductivity of the nanocomposites was found to be in the range of 0.001–0.003 S/cm. Higher saturation magnetization of 3.2 emu/g was observed at 300 K, revealing a super paramagnetic behavior of this nanocomposite.  相似文献   

9.
In the present investigation, synthesis of manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) nanoparticles with narrow size distribution have been prepared using ultrasound assisted emulsion (consisting of rapeseed oil as an oil phase and aqueous solution of Mn2+, Zn2+ and Fe2+ acetates) and evaporation processes. The as-prepared ferrite was nanocrystalline. In order to remove the small amount of oil present on the surface of the ferrite, it was subjected to heat treatment at 300 °C for 3 h. Both the as-prepared and heat treated ferrites have been characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), TGA/DTA, transmission electron microscopy (TEM) and energy dispersion X-ray spectroscopy (EDS) techniques. As-prepared ferrite is of 20 nm, whereas the heat treated ferrite shows the size of 33 nm. In addition, magnetic properties of the as-prepared as well as the heat treated ferrites have also been carried out and the results of which show that the spontaneous magnetization (σs) of the heat treated sample (24.1 emu/g) is significantly higher than that of the as-synthesized sample (1.81 emu/g). The key features of this method are avoiding (a) the cumbersome conditions that exist in the conventional methods; (b) usage of necessary additive components (stabilizers or surfactants, precipitants) and (c) calcination requirements. In addition, rapeseed oil as an oil phase has been used for the first time, replacing the toxic and troublesome organic nonpolar solvents. As a whole, this simple straightforward sonochemical approach results in more phase pure system with improved magnetization.  相似文献   

10.
The magnetic nanoparticles of Mn1−xCuxFe2O4 (x=0, 0.2) were prepared by using a sol-gel method. It is proved that both the MnFe2O4 and Mn0.8Cu0.2Fe2O4 nanoparticle samples have superparamagnetic feature. Although the particle sizes are the same, substitution of a small fraction Cu for Mn results in the increase of magnetocrystallite anisotropy energy, thus enhances the blocking temperature from 130 K for MnFe2O4 to 260 K for Mn0.8Cu0.2Fe2O4. Mössbauer spectroscopy confirms that the anisotropy constant K of the Mn0.8Cu0.2Fe2O4 material is distinctly higher than that of the MnFe2O4 compound. Increase of the blocking temperature suggests that the approach we employed is effective to tackle the ‘superparamagnetic limit’ problem.  相似文献   

11.
Single phase zinc ferrite (ZnFe2O4) nanoparticles have been prepared by the coprecipitation method without any subsequent calcination. The effects of precipitation temperature in the range 20–80 °C on the structural and the magnetic properties of zinc ferrite nanoparticles were investigated. The crystallite size, microstructure and magnetic properties of the prepared nanoparticles were studied using X-ray diffraction (XRD), Fourier transmission infrared spectrum, transmission electron microscope (TEM), energy dispersive X-ray spectrometer and vibrating sample magnetometer. The XRD results showed that the coprecipitated nanoparticles were single phase zinc ferrite with mixture of normal and inverse spinel structures. Furthermore, ZnFe2O4 nanoparticles have the crystallite size in the range 5–10 nm, as confirmed by TEM. The magnetic measurements exhibited that the zinc ferrite nanoparticles synthesized at 40 °C were superparamagnetic with the maximum magnetization of 7.3 emu/g at 10 kOe.  相似文献   

12.
Ni0.6Zn0.4Fe2O4 ferrite nano-particles with a crystallite size of about 20 nm were prepared by the conventional hydrothermal method, followed by annealing in a microwave oven for 7.5-15 min. The microstructure and magnetic properties of the samples were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The microwave annealing process has slight effect on the morphology and size of Ni0.6Zn0.4Fe2O4 ferrite nano-particles. However it reduces the lattice parameter and enhances the densification of the particles, and then greatly increases the saturation magnetization (50-56 emu/g) and coercive force of the samples as compared to the non-annealing condition. The microwave annealing process is an effective way to rapidly synthesize high performance ferrite nano-particle.  相似文献   

13.
《Current Applied Physics》2019,19(4):548-555
Magnetic powders of nickel ferrite (NiFe2O4) were successfully synthesized by combustion synthesis in air using iron (Fe), iron oxide (Fe2O3), and nickel oxide (NiO) as reactants and sodium perchlorate (NaClO4) as fuel (or oxidizing agent). The thermal behaviors were characterized using thermogravimetric analysis (TG) and differential thermal analysis (DSC). The as-combusted and final nickel ferrite powders were characterized in terms of chemical composition and morphology by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) coupled with energy dispersive X-Ray spectroscopy (EDX). In addition, magnetic properties were examined by vibrating sample magnetometer (VSM). The results of TG/DSC analysis indicated that increasing the content of NaClO4 increased the exothermicity of combustion reaction. XRD indicated that the final nickel ferrite powders formed a single spinel NiFe2O4 phase when the amount of NaClO4 used was 0.08 or 0.10 mol. SEM revealed roughly octahedron particles with sizes in a sub-micrometer range (∼500 nm). All final products exhibited soft magnetism and, synthesis that included 0.1 mol of NaClO4 produced pure NiFe2O4 powders that had a saturation magnetization (Ms) of 58.93 emu/g, which is higher than the reported value (55 emu/g) for the bulk product.  相似文献   

14.
Magnesium ferrite, MgFe2O4 nanoparticles with high saturation magnetization were successfully synthesized using ultrasonic wave-assisted ball milling. In this study, the raw materials were 4MgCO3·Mg(OH)2·5H2O and Fe2O3 powders and the grinding media was stainless steel ball. The average particle diameter of the product MgFe2O4 powders was 20 nm and the saturation magnetization of them reached 54.8 emu/g. The different results of aqueous solution ball milling with and without ultrasonic wave revealed that it was the coupling effect of ultrasonic wave and mechanical force that played an important role during the synthesis of MgFe2O4. In addition, the effect of the frequency of the ultrasonic wave on the ball milling process was investigated.  相似文献   

15.
In this research, a sonochemical activation-assisted biosynthesis of Au/Fe3O4 nanoparticles is proposed. The proposed synthesis methodology incorporates the use of Piper auritum (an endemic plant) as reducing agent and in a complementary way, an ultrasonication process to promote the synthesis of the plasmonic/magnetic nanoparticles (Au/Fe3O4). The synergic effect of the green and sonochemical synthesis favors the well-dispersion of precursor salts and the subsequent growth of the Au/Fe3O4 nanoparticles.The hybrid green/sonochemical process generates an economical, ecological and simplified alternative to synthesizing Au/Fe3O4 nanoparticles whit enhanced catalytic activity, pronounced magnetic properties. The morphological, chemical and structural characterization was carried out by high- resolution Scanning electron microscopy (HR-SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray diffraction (XRD), respectively. Ultraviolet–visible (UV–vis) and X-ray photoelectron (XPS) spectroscopy confirm the Au/Fe3O4 nanoparticles obtention. The magnetic properties were evaluated by a vibrating sample magnetometer (VSM). Superparamagnetic behavior, of the Au/ Fe3O4 nanoparticles was observed (Ms = 51 emu/g and Hc = 30 Oe at 300 K). Finally, the catalytic activity was evaluated by sonocatalytic degradation of methyl orange (MO). In this stage, it was possible to achieve a removal percentage of 91.2% at 15 min of the sonocatalytic process (160 W/42 kHz). The initial concentration of the MO was 20 mg L−1, and the Fe3O4-Au dosage was 0.075 gL−1. The MO degradation process was described mathematically by four kinetic adsorption models: Pseudo-first order model, Pseudo-second order model, Elovich and intraparticle diffusion model.  相似文献   

16.
Sonochemical synthesis (sonochemistry) is one of the most effective techniques of breaking down large clusters of nanoparticles (NPs) into smaller clusters or even individual NPs, which ensures their dispersibility (stability) in a solution over a long duration. This paper demonstrates the potential of sonochemistry becoming a valuable tool for the deposition of gold (Au) shell on iron oxide nanoparticles (Fe3O4 NPs) by explaining the underlying complex processes that control the deposition mechanism. This review summarizes the principles of the sonochemistry method and highlights the resulting phenomenon of acoustic cavitation and its associated physical, chemical and thermal effects. The effect of sonochemistry on the deposition of Au NPs on the Fe3O4 surface of various sizes is presented and discussed. A Vibra-Cell ultrasonic solid horn with tip size, frequency, power output of ½ inch, 20 kHz and 750 W respectively was used in core@shell synthesis. The sonochemical process was shown to affect the surface and structure of Fe3O4 NPs via acoustic cavitation, which prevents the agglomeration of clusters in a solution, resulting in a more stable dispersion. Deciphering the mechanism that governs the formation of Au shell on Fe3O4 core NPs has emphasized the potential of sonication in enhancing the chemical activity in solutions.  相似文献   

17.
This paper reports on the results of investigations into the structure and the magnetic and magnetooptical properties of thin films Mn x Fe3 ? x O4 prepared by solid-state reactions: isothermal annealing, self-propagating high-temperature synthesis, and a combination of these two regimes. The regimes favorable for the formation of films close in composition and structure to the stoichiometric compounds MnFe2O4 or Fe3O4 are established. The features observed in the spectral response of the magneto-optical Faraday effect and of the magnetic circular dichroism of the MnFe2O4 films are considered in terms of the electronic transitions in magnetic ions, primarily Fe3+, which occupy octahedral positions in the spinel structure.  相似文献   

18.
The incorporation of additional functional groups such as bismuth nanoparticles (Bi NPs) into magnetite nanoparticles (Fe3O4 NPs) is critical for their properties modification, stabilization, and multi-functionalization in biomedical applications. In this work, ultrasound has rapidly modified iron oxide (Fe3O4) NPs via incorporating their surface through coating with Bi NPs, creating unique Fe3O4@Bi composite NPs. The Fe3O4@Bi nanocomposites were synthesized and statistically optimized using an ultrasonic probe and response surface methodology (RSM). A face-centered central composite design (FCCD) investigated the effect of preparation settings on the stability, size, and size distribution of the nanocomposite. Based on the numerical desirability function, the optimized preparation parameters that influenced the responses were determined to be 40 ml, 5 ml, and 12 min for Bi concentration, sodium borohydride (SBH) concentration, and sonication time, respectively. It was found that the sonication time was the most influential factor in determining the responses. The predicted values for the zeta potential, hydrodynamic size, and polydispersity index (PDI) at the highest desirability solution (100%) were −45 mV, 122 nm, and 0.257, while their experimental values at the optimal preparation conditions were −47.1 mV, 125 nm, and 0.281, respectively. Dynamic light scattering (DLS) result shows that the ultrasound efficiently stabilized and functionalized Fe3O4NPs following modification to Fe3O4@Bi NPs, improved the zeta potential value from –33.5 to −47.1 mV, but increased the hydrodynamic size from 98 to 125 nm. Energy dispersive spectroscopy (EDX) validated the elemental compositions and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of Sumac (Rhus coriaria) compounds in the composition of the nanocomposites. The stability and biocompatibility of Fe3O4@Bi NPs were improved by using the extract solution of the Sumac edible plant. Other physicochemical results revealed that Fe3O4NPs and Fe3O4@Bi NPs were crystalline, semi-spherical, and monodisperse with average particle sizes of 11.7 nm and 19.5 nm, while their saturation magnetization (Ms) values were found to be 132.33 emu/g and 92.192 emu/g, respectively. In vitro cytotoxicity of Fe3O4@Bi NPs on the HEK-293 cells was dose- and time-dependent. Based on our findings, the sonochemical approach efficiently produced (and RSM accurately optimized) an extremely stable, homogeneous, and biocompatible Fe3O4@Bi NPs with multifunctional potential for various biomedical applications.  相似文献   

19.
Hybrid ceramics consisting of hydroxyapatite Ca10(PO4)6(OH)2 and ferrite Fe3O4 were synthesized using a two-stage procedure. The first stage included the synthesis of Fe3O4 ferrite particles by co-precipitation and the synthesis of hydroxyapatite. In the second stage, the magnetic hybrid hydroxyapatite–ferrite bioceramics were synthesized by a thorough mixing of the obtained powders of carbonated hydroxyapatite and Fe3O4 ferrite taken in a certain proportion, pressing into tablets, and annealing in a carbon dioxide atmosphere for 30 min at a temperature of 1200°C. The properties of the components and hybrid particles were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Mössbauer spectroscopy. The saturation magnetization of the hybrid ceramic composite containing 20 wt % Fe3O4 was found to be 12 emu/g. The hybrid hydroxyapatite (Ca10(PO4)6(OH)2)–ferrite Fe3O4 ceramics, which are promising for the use in magnetotransport and hyperthermia treatment, were synthesized and investigated for the first time.  相似文献   

20.
The paper reports on the effect of Al substitution on the structural and electrical properties of bulk ferrite series of basic composition MnFe2−2xAl2xO4 (0.0≤x≤0.5) synthesized using solid state reaction method. XRD analysis confirms that all the samples exhibit single phase cubic spinel structure excluding presence of any secondary phase. The dielectric constant shows a normal behaviour with frequency, whereas the loss tangent exhibits an anomalous behaviour with frequency for all compositions. Variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Fe+2 and Fe+3 as well as between Mn+2 and Mn+3 ions at octahedral sites. The complex impedance plane spectra shows the presence of two semicircles up to x=0.2, and only one semicircle for the higher values of x. The analysis of the data shows that the resistive and capacitive properties of the Mn ferrite are mainly due to processes associated with grain and grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号