首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A nonlinear model is applied to study pathologic vocal vibratory characteristics and voice treatments of Parkinson's disease. We find that a number of pathologic vocal characteristics commonly observed in Parkinson's disease, including reduced vibratory intensity, incomplete vocal closure, increased phonation threshold pressure, glottal tremor, subharmonics, and chaotic vocal fold vibrations, can be studied with this nonlinear model. We also find that two kinds of clinical voice treatments for Parkinson's disease, including respiratory effort treatment and Lee Silverman voice treatment can be studied with this computer model. Results suggest that respiratory effort treatment, in which subglottal pressure is increased, might aid in enhancing vibratory intensity, improving glottal closure, and avoiding vibratory irregularity. However, the Lee Silverman voice treatment, in which both subglottal pressure and vocal fold adduction are increased, might be better than respiratory effort treatment. Increasing vocal fold thickness would be further helpful to improve these pathologic characteristics. The model studies show consistencies with clinical observations. Computer models may be of value in understanding the dynamic mechanism of disordered voices and studying voice treatment effects in Parkinson's disease.  相似文献   

2.
A new numerical model of the vocal folds is presented based on the well-known two-mass models of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the incompressible Navier-Stokes equations. Glottal waves are produced using different initial glottal gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase of the glottal waves have been compared with values known from the literature. The phonation threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure obtained using the flow model with Navier-Stokes equations corresponds better to values determined in normal phonation than the phonation threshold pressure obtained using the flow model based on the Bernoulli equation. Using the Navier-Stokes equations, an increase of the subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.  相似文献   

3.
A phonetogram is a graph showing the sound pressure level (SPL) of softest and loudest phonation over the entire fundamental frequency range of a voice. A physiological interpretation of a phonetogram is facilitated if the SPL is measured with a flat frequency curve and if the vowel /a/ is used. It was found that in soft phonation, the SPL is mainly dependent on the amplitude of the fundamental, while in loud phonation, the SPL is mainly determined by overtones. The short-term SPL variation, i.e., the level variation within a tone, was about 5 dB in soft phonation and close to 2 dB in loud phonation. For two normal voices the long-term SPL variation, calculated as the mean standard deviation of SPL for day-to-day variation, was found to be between 2.4 and 3.4 dB in soft and loud phonation. Speakers who raise their loudness of phonation also tend to raise their mean voice fundamental frequency. Measures obtained from speaking at various voice levels were combined so that typical pathways could be introduced into the phonetogram. The average slope of these pathways was 0.3–0.5 st/dB for healthy subjects. Averaged phonetograms for male singers and male nonsingers did not differ significantly, but averaged phonetograms for female singers and female nonsingers did, in that the upper contour was higher for the female singers. Averaged phonetograms for female patients with non-organic dysphonia showed significantly lower SPL values in loudest phonation as compared to healthy female subjects, while no corresponding difference was seen for males in this regard. With respect to the SPL values for softest phonation, male dysphonic patients showed significantly higher SPL values than healthy male subjects, while no corresponding difference was seen in female subjects. The subglottal pressure mirrored these phonetogram differences between healthy and pathological voices. The averaged phonetograms of female patients after voice therapy showed an increased similarity with those of normal voices. For the male patients the averaged phonetogram did not change significantly after therapy.  相似文献   

4.
Sustained high notes, diminishing gradually from the loudest to the softest phonation within a maneuver called messa di voce, are examined in two contrasting professional tenor voices. Signals of the sound pressure level, electroglottograph, and mean esophageal pressure are recorded, and similar maneuvers by the same subjects are examined stroboscopically. The lyric voice is found to make a gradual diminuendo while maintaining nearly constant posture of the vocal tract together with a phase of complete closure in the glottal cycle. The robust voice, by contrast, passes abruptly from a production of high subglottal pressure and a high closed quotient to one of low pressure and incomplete closure, and the transition is marked by a sudden opening of the previously constricted laryngeal collar. It is proposed that the mode of soft voice production demonstrated by the robust voice be recognized as a distinct register of the singing voice.  相似文献   

5.
The clinical value of objective voice measures in nonsinging patients with superior laryngeal nerve dysfunction is unknown. In this study, patients with symptomatic unilateral superior nerve paresis were evaluated for maximum phonation time, frequency range of phonation, and mean flow rate. Patients with coexisting pathology, bilateral superior nerve paresis, and those with recurrent laryngeal nerve paresis were excluded from this analysis. A total of 35 nonsinging patients, 14 men and 21 women, with unilateral superior laryngeal nerve paresis were examined between 1999 and 2002. The severity of superior laryngeal nerve paresis ranged from 25% to 85% of normal recruitment with a mean of 70% superior laryngeal nerve recruitment in men and 65% in women by electromyography. In both men and women with superior laryngeal nerve paresis, the maximum phonation time and frequency range of phonation were decreased and the mean air flow rate was increased when compared with normal population values. The jitter percent, shimmer percent, and noise-to-harmonic ratio were also increased in patients when compared with normative data. Selected objective voice measures are abnormal in voice patients with superior laryngeal nerve paresis, which suggests that the measures may be useful as outcomes measures after therapy. More research is encouraged.  相似文献   

6.
Phonation threshold pressure has been defined as the minimum subglottalpressure to generate phonation. Previous research has indicated that children may habitually employ higher subglottal pressures than adults. In the present investigation sound pressure level (SPL) and subglottal pressures at different pitch levels were measured at and above phonation threshold in nine children. Phonation threshold values were scattered in reasonable agreement with Titzes' prediction, although a discrepancy was noted regarding the frequency dependence in some voices. At normal conversational loudness and loudest level of phonation the children's PS values were between two to four and four to eight times the predicted threshold values, respectively. At normal conversational loudness and habitual pitch subglottal pressures were lower than those previously observed for children, but similar to those found for female adults. The SPL in softest and loudest phonation were somewhat lower as compared to previous phonetogram data for children and for female adults. At normal loudness and habitual pitch the SPL values were similar to those of female adults. For a doubling of Ps mean SPL increased by 10.5 dB on the average.  相似文献   

7.
According to experience in voice therapy and singing pedagogy, breathing habits can be used to modify phonation, although this relationship has never been experimentally demonstrated. In the present investigation we examine if lung volume affects phonation. Twenty-four untrained subjects phonated at different pitches and degrees of vocal loudness at different lung volumes. Mean subglottal pressure was measured and voice source characteristics were analyzed by inverse filtering. The main results were that with decreasing lung volume, the closed quotient increased, while subglottal pressure, peak-to-peak flow amplitude, and glottal leakage tended to decrease. In addition, some estimates of the amount of the glottal adduction force component were examined. Possible explanations of the findings are discussed.  相似文献   

8.
Phonation threshold pressures were directly measured in five normal subjects in a variety of voicing conditions. The effects of fundamental frequency, intensity, closure speed of the vocal folds, and laryngeal airway resistance on phonation threshold pressures were determined. Subglottic air pressures were measured using percutaneous puncture of the cricothyroid membrane. Both onset and offset of phonation were studied to see if a hysteresis effect produced lower offset pressures than onset pressures. Univariate analysis showed that phonation threshold pressure was influenced most strongly by fundamental frequency and intensity. Multiple linear regression showed that these two variables, as well as laryngeal airway resistance, most strongly predicted phonation threshold pressure. Two of the five subjects demonstrated a significant hysteresis effect, but one subject actually had higher offset pressures than onset pressures.  相似文献   

9.
The effects of prolonged (5x45 minute) reading (vocal loading) on fundamental frequency (F0), sound pressure level (SPL), subglottal (intraroral) pressure (p), and two glottal flow waveform parameters (AC amplitude of glottal flow, f, and negative peak amplitude of differentiated flow (d) of normal female and male subjects (N = 80) were studied. Two rest (morning and noon) and three loading (two in the morning and one in the afternoon) samples were recorded and analyzed. The glottal waveforms were obtained by inverse filtering of the acoustic pressure waveforms of speaking voice samples. The analyses were based on measurement and inverse filtering of the first stressed syllable of "paappa" words repeated 3x5 times for normal, as soft as possible, and as loud as possible phonation. In normal phonation the parameter values changed statistically significantly due to loading. In many cases the values obtained in the morning samples changed after the first loading session. This is interpreted as a vocal "warming-up effect." Especially in soft phonation p, d, and f were sensitive indicators of vocal loading. In both normal and soft phonation, the SPL, p, d, and f values tended to rise due to prolonged reading in the morning and afternoon samples, indicating increased effort (normal phonation) and a rise in the phonatory threshold (soft phonation). The lunch break vocal rest ("rest effect") considerably affected the parameter values in many cases.  相似文献   

10.
Changes in mean fundamental frequency accompanying changes in loudness of phonation are analyzed in 9 professional singers, 9 nonsingers, and 10 male and 10 female patients suffering from vocal functional dysfunction. The subjects read discursive texts with noise in earphones, and some also at voluntarily varied vocal loudness. The healthy subjects phonated as softly and as loudly as possible at various fundamental frequencies throughout their pitch ranges, and the resulting mean phonetograms are compared. Mean pitch was found to increase by about half-semitones per decibel sound level. Grossly, the subject groups gave similar results, although the singers changed voice pitch more than the nonsingers. The voice pitch changes may be explained as passive results of changes of subglottal pressure required for the sound level variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号