首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 57 毫秒
1.
2.
In this paper a given spacetime theoryT is characterized as the theory of a certainspecies of structure in the sense of Bourbaki [1]. It is then possible to clarify in a rigorous way the concepts ofpassive andactive covariance ofT under the action of the manifold mapping groupG M . For eachT, we define also aninvariance groupG I T and, in general,G I TG M . This group is defined once we realize that, for eachτModT, each explicit geometrical object defining the structure can be classified as absolute or dynamical [2]. All spacetime theories possess alsoimplicit geometrical objects that do not appear explicitly in the structure. These implicit objects are not absolute nor dynamical. Among them there are thereference frame fields, i.e., “timelike” vector fieldsXTU, \(U \subseteq M\) M, whereM is a manifold which is part ofST, a substructure for eachτModT, called spacetime. We give a physically motivated definition of equivalent reference frames and introduce the concept of theequivalence group of a class of reference frames of kind X according to T, G X T. We define thatT admits aweak principle of relativity (WPR) only ifG X T ≠ identity for someX. IfG X T =G I T for someX, we say thatT admits a strong principle of relativity (PR). The results of this paper generalize and clarify several results obtained by Anderson [2], Scheibe [3], Hiskes [4], Recami and Rodrigues [5], Friedman [6], Fock [7], and Scanavini [8]. Among the novelties here, there is the realization that the definitions ofG I T andG X T can be given only when certain boundary conditions for the equations of motion ofT can be physically realizable in the domainU \(U \subseteq M\) M, where a given reference frame is defined. The existence ofphysically realizable boundary conditions for eachτModT (in ?U), in contrast with the mathematically possible boundary condition, is then seen to be essential for the validity of a principle of relativity forT. The methodology of the present paper has been applied to several topics of spacetime physics with very interesting results. Here we mention:
  1. The Newtonian concepts of absolute space and absolute time can be presented in a very elegant way as “species of structure”. One of the surprising results is that we succeeded in finding a Lorentzian structure [9] in Newtonian spacetime without introducing any new explict geometrical object in the original structure. The Newtonian spacetime structure and its relation to the relativistic spacetime structure and to the structure of the spacetime of the so-called Lorentz aether theories [11,12] is fully discussed in [13].
  2. It is possible to present in a novel and unified way the question concerning experiments designed to detect a possible breakdown of Lorentz invariance, a subject we already dedicated attention to in Rodrigues and Tiomno [11,12] and Rodrigues [14,15]. A full account of this subject will be published elsewhere.
  3. In Rodrigues and Scanavini [16], we proved that there are models of General Relativity that contain a canonical privileged locally inertial reference frame that can be physically distinguished from any other frame by experiments doneinside the frame.
Although the formalism of this paper may at first sight look very abstract, actually it is easy to aplly it to specific theories. We present an example at the end of the paper which is sufficiently general to show “in action” almost all concepts introduced in this paper.  相似文献   

3.
Stars of~8-100 M_⊙end their lives as core-collapse supernovae(SNe). In the process they emit a powerful burst of neutrinos,produce a variety of elements, and leave behind either a neutron star or a black hole. The wide mass range for SN progenitors results in diverse neutrino signals, explosion energies, and nucleosynthesis products. A major mechanism to produce nuclei heavier than iron is rapid neutron capture, or the r process. This process may be connected to SNe in several ways. A brief review is presented on current understanding of neutrino emission, explosion, and nucleosynthesis of SNe.  相似文献   

4.
5.
We consider the effect of torsion in the early universe to see if it is possible to explain the small value (if not zero) of the Cosmological constant at the present time. For the gauge-theoretic formulation of the Einstein-Cartan theory, we find a wormhole instanton solution which has a minimum (baby universe) radius of the Planck length. The basic difficulty with the wormhole approach is stressed. Finally, we give an explicit calculation from the expression for the evolution of the scale factor, which shows that the spin-dominated interaction term in the very early universe can cancel the Cosmological constant term at that epoch.  相似文献   

6.
7.
For bipolaron states, a relation is established between the variational principle and the virial theorem optimizing the electronic wave functions. It is shown that a bipolaron one-center state is unstable under any conditions that do not violate basic physical principles. It is established that a stage-by-stage increase in the flexibility of the electronic wave function due to the electron-electron correlations does not stabilize a one-center bipolaron. It is argued that the results of calculations based on the one-center bipolaron model are incorrect.  相似文献   

8.
《Comptes Rendus Physique》2018,19(3):113-133
The realization of the first high-brightness blue-light-emitting diodes (LEDs) in 1993 sparked a more than twenty-year period of intensive research to improve their efficiency. Solutions to critical challenges related to material quality, light extraction, and internal quantum efficiency have now enabled highly efficient blue LEDs that are used to generate white light in solid-state lighting systems that surpass the efficiency of conventional incandescent lighting by 15–20×. Here we discuss the initial invention of blue LEDs, historical developments that led to their current state-of-the-art performance, and potential future directions for blue LEDs and solid-state lighting.  相似文献   

9.
Emerging from music and the visual arts, questions about hearing and seeing deeply affected Hermann Helmholtz’s and Bernhard Riemann’s contributions to what became called the “problem of space [Raumproblem],” which in turn influenced Albert Einstein’s approach to general relativity. Helmholtz’s physiological investigations measured the time dependence of nerve conduction and mapped the three-dimensional manifold of color sensation. His concurrent studies on hearing illuminated musical evidence through experiments with mechanical sirens that connect audible with visible phenomena, especially how the concept of frequency unifies motion, velocity, and pitch. Riemann’s critique of Helmholtz’s work on hearing led Helmholtz to respond and study Riemann’s then-unpublished lecture on the foundations of geometry. During 1862–1870, Helmholtz applied his findings on the manifolds of hearing and seeing to the Raumproblem by supporting the quadratic distance relation Riemann had assumed as his fundamental hypothesis about geometrical space. Helmholtz also drew a “close analogy … in all essential relations between the musical scale and space.” These intersecting studies of hearing and seeing thus led to reconsideration and generalization of the very concept of “space,” which Einstein shaped into the general manifold of relativistic space-time.  相似文献   

10.
In late 1900, the German theoretical physicist Max Planck derived an expression for the spectrum of black-body radiation. That derivation was the first step in the introduction of quantum concepts into physics. But how did Planck think about his result in the early years of the twentieth century? Did he assume that his derivation was consistent with the continuous energies inherent in Maxwellian electrodynamics and Newtonian mechanics? Or did he see the beginnings, however tentative and uncertain, of the quantum revolution to come? Historians of physics have debated this question for over twenty years. In this article, I review that debate and, at the same time, present Planck's achievement in its historical context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号