首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
De Sitter black holes have the black hole horizon and the cosmological horizon, and the thermodynamic quantities on the two horizons all satisfy the first law of thermodynamics. The thermodynamic quantities on the two horizons are not independent but are correlated to each other. Taking de Sitter space-time as thermodynamic system, we investigated the effective thermodynamic quantities of Reissner–Nordström de Sitter black hole surrounded by the quintessence (RN-DSQ). We obtained the effective temperature and entropy of the system by considering the corrections between the black hole horizon and the cosmological horizon. We found that the entropy of the RN-DSQ is in agreement with that of Reissner–Nordström de Sitter black hole. It offers a basis for further studying of the thermodynamic properties of de Sitter space-time.  相似文献   

2.
The fundamental equation of the thermodynamic system gives the relation between the internal energy, entropy and volume of two adjacent equilibrium states. Taking a higher-dimensional charged Gauss–Bonnet black hole in de Sitter space as a thermodynamic system, the state parameters have to meet the fundamental equation of thermodynamics. We introduce the effective thermodynamic quantities to describe the black hole in de Sitter space. Considering that in the lukewarm case the temperature of the black hole horizon is equal to that of the cosmological horizon, we conjecture that the effective temperature has the same value. In this way, we can obtain the entropy formula of spacetime by solving the differential equation. We find that the total entropy contains an extra term besides the sum of the entropies of the two horizons. The corrected term of the entropy is a function of the ratio of the black hole horizon radius to the cosmological horizon radius, and is independent of the charge of the spacetime.  相似文献   

3.
From a new perspective, we discuss the thermodynamic entropy of (n+2)-dimensional Reissner-Nordströmde Sitter (RNdS) black hole and analyze the phase transition of the effective thermodynamic system. Considering the correlations between the black hole event horizon and the cosmological horizon, we conjecture that the total entropy of the RNdS black hole should contain an extra term besides the sum of the entropies of the two horizons. In the lukewarm case, the effective temperature of the RNdS black hole is the same as that of the black hole horizon and the cosmological horizon. Under this condition, we obtain the extra contribution to the total entropy. With the corrected entropy, we derive other effective thermodynamic quantities and analyze the phase transition of the RNdS black hole in analogy to the usual thermodynamic system.  相似文献   

4.
张丽春  武月琴  赵仁 《中国物理》2004,13(6):974-978
Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n 2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole‘s entropy which contains two horizons (a black hole‘s horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole‘s horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole‘s entropy and horizon‘s area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.  相似文献   

5.
In this paper,we consider(n+1)-dimensional topological dilaton de Sitter black holes with a powerMaxwell field as thermodynamic systems.The thermodynamic quantities corresponding to the black hole horizon and the cosmological horizon are interrelated.Therefore,the total entropy of the space-time should be the sum of the entropies of the black hole horizon and the cosmological horizon plus a correction term which is produced by the association of the two horizons.We analyze the entropic force produced by the correction term at given temperatures,which is affected by the parameters and dimensions of the space-time.It is shown that the change of entropic force with the position ratio of the two horizons in some regions is similar to that of the variation of the Lennard-Jones force with the position of particles.If the effect of entropic force is similar to that of the Lennard-Jones force,and other forces are absent,the motion of the cosmological horizon relative to the black hole horizon should have an oscillating process.The entropic force between the two horizons is probably one of the participants in driving the evolution of the universe.  相似文献   

6.
Jacob Bekenstein's identification of black hole event horizon area with entropy proved to be a landmark in theoretical physics. In this paper we trace the subsequent development of the resulting generalized second law of thermodynamics (GSL), especially its extension to incorporate cosmological event horizons. In spite of the fact that cosmological horizons do not generally have well-defined thermal properties, we find that the GSL is satisfied for a wide range of models. We explore in particular the case of an asymptotically de Sitter universe filled with a gas of small black holes as a means of casting light on the relative entropic worth of black hole versus cosmological horizon area. We present some numerical solutions of the generalized total entropy as a function of time for certain cosmological models, in all cases confirming the validity of the GSL.  相似文献   

7.
We discuss a class of (local and non-local) theories of gravity that share same properties: (i) they admit the Einstein spacetime with arbitrary cosmological constant as a solution; (ii) the on-shell action of such a theory vanishes and (iii) any (cosmological or black hole) horizon in the Einstein spacetime with a positive cosmological constant does not have a non-trivial entropy. The main focus is made on a recently proposed non-local model. This model has two phases: with a positive cosmological constant Λ>0Λ>0 and with zero Λ. The effective gravitational coupling differs essentially in these two phases. Generalizing the previous result of Barvinsky we show that the non-local theory in question is free of ghosts on the background of any Einstein spacetime and that it propagates a standard spin-2 particle. Contrary to the phase with a positive Λ, where the entropy vanishes for any type of horizon, in an Einstein spacetime with zero cosmological constant the horizons have the ordinary entropy proportional to the area. We conclude that, somewhat surprisingly, the presence of any, even extremely tiny, positive cosmological constant should be important for the proper resolution of the entropy problem and, possibly, the information puzzle.  相似文献   

8.
We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.  相似文献   

9.
There are two event horizons in Schwarzschild–de Sitter space-time, a blackhole horizon and a cosmological horizon. They have different temperatures. Theradiation between them is of course not in thermal equilibrium. According to themembrane model suggested by us, the two horizons can be thought of as twoindependent thermodynamic systems in equilibrium. Their Dirac field entropiesare calculated via a membrane model. The result shows that the entropy of theDirac field is proportional to the sum of the areas of the two event horizons. Ifwe choose the same cutoff as that of Klein–Gordon field, the entropy of theDirac field is times that of Klein–Gordon field. This agrees with previousresults.  相似文献   

10.
Spherically symmetric solutions coupled to massive scalar particles in five-dimensional Kaluza-Klein theory are obtained. The solutions contain two event horizons. The inner horizon corresponds to the Schwarzschild black hole and the outer one is a new horizon which is produced by the massive scalar particles. It is found that the massive modes contribute an effective cosmological constant to the four-dimensional Einstein theory.  相似文献   

11.
In this Letter, we discuss the dynamics of a domain wall universe embedded into the charged black hole spacetime of the Einstein–Born–Infeld (EBI) theory. There are four kinds of possible spacetime structures, i.e., those with no horizon, the extremal one, those with two horizons (as the Reissner–Nordström black hole), and those with a single horizon (as the Schwarzshild black hole). We derive the effective cosmological equations on the wall. In contrast to the previous works, we take the contribution of the electrostatic energy on the wall into account. By examining the properties of the effective potential, we find that a bounce can always happen outside the (outer) horizon. For larger masses of the black hole, the height of the barrier between the horizon and bouncing point in the effective potential becomes smaller, leading to longer time scales of bouncing process. These results are compared with those in the previous works.  相似文献   

12.
In this work, we have considered the Vaidya spacetime in null radiating fluid with perfect fluid in higher dimension and have found the solution for barotropic fluid. We have shown that the Einstein’s field equations can be obtained from Unified first law i.e., field equations and unified first law are equivalent. The first law of thermodynamics has also been constructed by Unified first law. From this, the variation of entropy function has been derived on the horizon. The variation of entropy function inside the horizon has been derived using Gibb’s law of thermodynamics. So the total variation of entropy function has been constructed at apparent and event horizons both. If we do not assume the first law, then the entropy on the both horizons can be considered by area law and the variation of total entropy has been found at both the horizons. Also the validity of generalized second law (GSL) of thermodynamics has been examined at both apparent and event horizons by using the first law and the area law separately. When we use first law of thermodynamics and Bekenstein-Hawking area law of thermodynamics, the GSL for apparent horizon in any dimensions are satisfied, but the GSL for event horizon can not be satisfied in any dimensions.  相似文献   

13.
We discuss black hole solutions of Einstein-Λ gravity in the presence of nonlinear electrodynamics in d S spacetime. Considering the correlation of the thermodynamic quantities respectively corresponding to the black hole horizon and cosmological horizon of dS spacetime and taking the region between the two horizons as a thermodynamic system, we derive effective thermodynamic quantities of the system according to the first law of thermodynamics, and investigate the thermodynamic properties of the system under the influence of nonlinearity parameter α. It is shown that nonlinearity parameter α influences the position of the black hole horizon and the critical state of the system, and along with electric charge has an effect on the phase structure of the system,which is obvious, especially as the effective temperature is below the critical temperature. The critical phase transition is proved to be second-order equilibrium phase transition by using the Gibbs free energy criterion and Ehrenfest equations.  相似文献   

14.
张丽春  赵仁 《物理学报》2004,53(12):4435-4438
对具有双旋转参数的5维时空中,黑洞视界的热力学参量与宇宙视界的热力学参量进行了研究 .发现宇宙视界的熵能写为Cardy-Verlinde公式的形式,而黑洞视界的熵要写成Cardy-Verl inde公式的形式,必须用Abbott 和Deser的方法,计算具有双旋转参数5维黑洞的质量.通过研究,给出了具有双旋转参数5维黑洞各热力学参量之间满足的关系式,即热力学第一定律的微分式. 关键词: Cardy-Verlinde公式 Casimir能量 de Sitter时空  相似文献   

15.
I describe how gravitational entropy is intimately connected with the concept of gravitational heat, expressed as the difference between the total and free energies of a given gravitational system. From this perspective one can compute these thermodyanmic quantities in settings that go considerably beyond Bekenstein's original insight that the area of a black hole event horizon can be identified with thermodynamic entropy. The settings include the outsides of cosmological horizons and spacetimes with NUT charge. However the interpretation of gravitational entropy in these broader contexts remains to be understood.  相似文献   

16.
Hawking radiation spectrum via fermions tunneling is investigated through horizon radii of Plebański-Demiański family of black holes. To this end, we determine the tunneling probabilities for outgoing and incoming charged fermion particles and obtain their corresponding Hawking temperatures. The graphical behavior of Hawking temperatures and horizon radii (cosmological and event horizons) is also studied. We find consistent results with those already available in literature.  相似文献   

17.
In this paper we show that the entropy of a cosmological horizon in 4-dimensional topological Kerr-Newman-de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any number of dimensions. Furthermore, we find that the entropy of a black hole horizon can also be rewritten in terms of the Cardy-Verlinde formula for these black holes in de Sitter spaces, if we use the definition due to Abbott and Deser for conserved charges in asymptotically de Sitter spaces. Such results presume a well-defined dS/CFT correspondence, which has not yet attained the credibility of its AdS analogue.Received: 7 April 2003, Revised: 18 June 2003, Published online: 29 August 2003  相似文献   

18.
In this paper we discuss thermodynamics parameters of black hole horizon and cosmological horizon in general high-dimensional space-time. We obtain that the entropy of a cosmological horizon can be described by the Cardy-Verlinde formula. However, the entropy of black hole horizon will be expressed in a form of the Cardy-Verlinde formula, if one adopts the methods given by Abbott and Deser to compute the mass of a black hole in general high-dimensional space-time. Through discussion, relation among various thermodynamics parameters of the black hole in general high-dimensional space-time is given. That is, differential formula of the first law of thermodynamics is obtained. Because we discuss the general high-dimensional space-time, our result has universality. PACS: 04.20.Dw, 97.60.Lf  相似文献   

19.
Considering corrections to all orders in Planck length on the quantum state density from generalized uncertainty principle, we calculate the statistical entropy of scalar field near event horizon and cosmological horizon of Vaidya-de Sitter black hole without any artificial cutoff. It is shown that the entropy is linear sum of event horizon area and cosmological horizon area and there are similar proportional parameters related to changing rate of the horizon position. This is different from the static and stationary cases.  相似文献   

20.
By using the path integral method of Gibbons and Hawking, the entropy of the Kerr-de Sitter black hole is investigated under the microcanonical ensemble. We find that the entropy is one eighth the sum of the products of the Euler number of its cosmological horizon and event horizon with their respective areas. It is shown that the origin of the entropy of the black hole is related to the topology of its instanton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号