首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
A bulk-arrival single server queueing system with second multi-optional service and unreliable server is studied in this paper. Customers arrive in batches according to a homogeneous Poisson process, all customers demand the first "essential" service, whereas only some of them demand the second "multi-optional" service. The first service time and the second service all have general distribution and they are independent. We assume that the server has a service-phase dependent, exponentially distributed life time as well as a servicephase dependent, generally distributed repair time. Using a supplementary variable method, we obtain the transient and the steady-state solutions for both queueing and reliability measures of interest.  相似文献   

2.
An M/G/1 retrial queue with two-phase service and feedback is studied in this paper, where the server is subject to starting failures and breakdowns during service. Primary customers get in the system according to a Poisson process, and they will receive service immediately if the server is available upon arrival. Otherwise, they will enter a retrial orbit and are queued in the orbit in accordance with a first-come-first-served (FCFS) discipline. Customers are allowed to balk and renege at particular times. All customers demand the first “essential” service, whereas only some of them demand the second “multi-optional” service. It is assumed that the retrial time, service time and repair time of the server are all arbitrarily distributed. The necessary and sufficient condition for the system stability is derived. Using a supplementary variable method, the steady-state solutions for some queueing and reliability measures of the system are obtained.  相似文献   

3.
This paper concerns a discrete-time Geo/Geo/1 retrial queue with both positive and negative customers where the server is subject to breakdowns and repairs due to negative arrivals. The arrival of a negative customer causes one positive customer to be killed if any is present, and simultaneously breaks the server down. The server is sent to repair immediately and after repair it is as good as new. The negative customer also causes the server breakdown if the server is found idle, but has no effect on the system if the server is under repair. We analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. The generating function of the number of customers in the orbit and in the system are also obtained, along with the marginal distributions of the orbit size when the server is idle, busy or down. Finally, we present some numerical examples to illustrate the influence of the parameters on several performance characteristics of the system.  相似文献   

4.
In this paper, we consider a discrete-time preemptive priority queue with different service completion probabilities for two classes of customers, one with high-priority and the other with low-priority. This model corresponds to the classical preemptive priority queueing system with two classes of independent Poisson customers and a single exponential server. Due to the possibility of customers’ arriving and departing at the same time in a discrete-time queue, the model considered in this paper is more complicated than the continuoustime model. In this model, we focus on the characterization of the exact tail asymptotics for the joint stationary distribution of the queue length of the two types of customers, for the two boundary distributions and for the two marginal distributions, respectively. By using generating functions and the kernel method, we get the exact tail asymptotic properties along the direction of the low-priority queue, as well as along the direction of the high-priority queue.  相似文献   

5.
A discrete-time GI/G/1 retrial queue with Bernoulli retrials and time-controlled vacation policies is investigated in this paper. By representing the inter-arrival, service and vacation tlmes using a Markov-based approach, we are able to analyze this model as a level-dependent quasi-birth-and-death (LDQBD) process which makes the model algorithmically tractable. Several performance measures such as the stationary probability distribution and the expected number of customers in the orbit have been discussed with two different policies: deterministic time-controlled system and random time-controlled system. To give a comparison with the known vacation policy in the literature, we present the exhaustive vacation policy as a contrast between these policies under the early arrival system (EAS) and the late arrival system with delayed access (LAS-DA). Significant difference between EAS and LAS-DA is illustrated by some numerical examples.  相似文献   

6.
We consider an M X /G/1 queueing system with two phases of heterogeneous service and Bernoulli vacation schedule which operate under a linear retrial policy. In addition, each individual customer is subject to a control admission policy upon the arrival. This model generalizes both the classical M/G/1 retrial queue with arrivals in batches and a two phase batch arrival queue with a single vacation under Bernoulli vacation schedule. We will carry out an extensive stationary analysis of the system , including existence of the stationary regime, embedded Markov chain, steady state distribution of the server state and number of customer in the retrial group, stochastic decomposition and calculation of the first moment.  相似文献   

7.
In this paper,we study the matched queueing system,MoPH/G/1,where the type-Ⅰ input is a Poisson process,the type-Ⅱ input is a PH renewal process, and the service times are i.i.d. random variables. A necessary and sufficient condition for the stationariness of the system is given.The expectations of the length of the non-idle period and the number of customers served in a non-idle period are obtained.  相似文献   

8.
Abstract This paper deals with a discrete-time batch arrival retrial queue with the server subject to starting failures.Diferent from standard batch arrival retrial queues with starting failures,we assume that each customer after service either immediately returns to the orbit for another service with probabilityθor leaves the system forever with probability 1θ(0≤θ1).On the other hand,if the server is started unsuccessfully by a customer(external or repeated),the server is sent to repair immediately and the customer either joins the orbit with probability q or leaves the system forever with probability 1 q(0≤q1).Firstly,we introduce an embedded Markov chain and obtain the necessary and sufcient condition for ergodicity of this embedded Markov chain.Secondly,we derive the steady-state joint distribution of the server state and the number of customers in the system/orbit at arbitrary time.We also derive a stochastic decomposition law.In the special case of individual arrivals,we develop recursive formulae for calculating the steady-state distribution of the orbit size.Besides,we investigate the relation between our discrete-time system and its continuous counterpart.Finally,some numerical examples show the influence of the parameters on the mean orbit size.  相似文献   

9.
The two-stage tandem queueing system M(z)/M/c→/PH(r)/1/K is studied in this paper. Customers arrive at stage-Ⅰ system in batches according to a Poisson process, and the size of the batch, x , is a r. v. within a range of a finite number of positive integers. The stage- Ⅱ ststem has finite capacity, where customers are served in batches with a PH-distribution and the size of the batch is a positive integer r. Only after served in stage- Ⅰ system, and then served in stage- Ⅱ system, can the customers depart from the whole system. Several definitions such as the stage- Ⅰ service blocked time, the first-class and the second-class batch waiting times, and the batch sojourn time are introduced, and their distributions are obtained respectively.  相似文献   

10.
In this paper, we consider two-queue polling model with a Timer and a Randomly- Timed Gated (RTG) mechanism. At queue Q1, we employ a Timer T^(1): whenever the server polls queue Q1 and finds it empty, it activates a Timer. If a customer arrives before the Timer expires, a busy period starts in accordance with exhaustive service discipline. However, if the Timer is shorter than the interarrival time to queue Q1, the server does not wait any more and switches back to queue Q2. At queue Q2, we operate a RTG mechanism T^(2), that is, whenever the server reenters queue Q2, an exponential time T^(2) is activated. If the server empties the queue before T^(2), it immediately leaves for queue Q1. Otherwise, the server completes all the work accumulated up to time T^(2) and leaves. Under the assumption of Poisson arrivals, general service and switchover time distributions, we obtain probability generating function (PGF) of the queue lengths at polling instant and mean cycle length and Laplace Stieltjes transform (LST) of the workload.  相似文献   

11.
This paper deals with the steady state behaviour of an Mx/G/1 queue with general retrial time and Bernoulli vacation schedule for an unreliable server, which consists of a breakdown period and delay period. Here we assume that customers arrive according to compound Poisson processes. While the server is working with primary customers, it may breakdown at any instant and server will be down for short interval of time. Further concept of the delay time is also introduced. The primary customer finding the server busy, down or vacation are queued in the orbit in accordance with FCFS (first come first served) retrial policy. After the completion of a service, the server either goes for a vacation of random length with probability p or may continue to serve for the next customer, if any with probability (1 − p). We carry out an extensive analysis of this model. Finally, we obtain some important performance measures and reliability indices of this model.  相似文献   

12.
An M/G/1 retrial queueing system with disasters and unreliable server is investigated in this paper. Primary customers arrive in the system according to a Poisson process, and they receive service immediately if the server is available upon their arrivals. Otherwise, they will enter a retrial orbit and try their luck after a random time interval. We assume the catastrophes occur following a Poisson stream, and if a catastrophe occurs, all customers in the system are deleted immediately and it also causes the server’s breakdown. Besides, the server has an exponential lifetime in addition to the catastrophe process. Whenever the server breaks down, it is sent for repair immediately. It is assumed that the service time and two kinds of repair time of the server are all arbitrarily distributed. By applying the supplementary variables method, we obtain the Laplace transforms of the transient solutions and also the steady-state solutions for both queueing measures and reliability quantities of interest. Finally, numerical inversion of Laplace transforms is carried out for the blocking probability of the system, and the effects of several system parameters on the blocking probability are illustrated by numerical inversion results.  相似文献   

13.
This paper examines an M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 − p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the Jth vacation, the server becomes idle in the system. Whenever one or more customers arrive at server idle state, the server immediately starts providing service for the arrivals. Assume that the server may meet an unpredictable breakdown according to a Poisson process and the repair time has a general distribution. For such a system, we derive the distributions of important system characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, the distributions of idle period, busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (pJ) at a minimum cost, and some numerical examples are presented for illustrative purpose.  相似文献   

14.
In this paper we consider a single server queue with Poisson arrivals and general service distributions in which the service distributions are changed cyclically according to customer sequence number. This model extends a previous study that used cyclic exponential service times to the treatment of general service distributions. First, the stationary probability generating function and the average number of customers in the system are found. Then, a single vacation queueing system with aN-limited service policy, in which the server goes on vacation after servingN consecutive customers is analyzed as a particular case of our model. Also, to increase the flexibility of using theM/G/1 model with cyclic service times in optimization problems, an approximation approach is introduced in order to obtain the average number of customers in the system. Finally, using this approximation, the optimalN-limited service policy for a single vacation queueing system is obtained.On leave from the Department of Industrial Engineering, Iran University of Science and Technology, Narmak, Tehran 16844, Iran.  相似文献   

15.
We consider a discrete time single server queueing system in which arrivals are governed by the Markovian arrival process. During a service period, all customers are served exhaustively. The server goes on vacation as soon as he/she completes service and the system is empty. Termination of the vacation period is controlled by two threshold parameters N and T, i.e. the server terminates his/her vacation as soon as the number waiting reaches N or the waiting time of the leading customer reaches T units. The steady state probability vector is shown to be of matrix-geometric type. The average queue length and the probability that the server is on vacation (or idle) are obtained. We also derive the steady state distribution of the waiting time at arrivals and show that the vacation period distribution is of phase type.  相似文献   

16.
This paper investigates a batch arrival retrial queue with general retrial times, where the server is subject to starting failures and provides two phases of heterogeneous service to all customers under Bernoulli vacation schedules. Any arriving batch finding the server busy, breakdown or on vacation enters an orbit. Otherwise one customer from the arriving batch enters a service immediately while the rest join the orbit. After the completion of two phases of service, the server either goes for a vacation with probability p or may wait for serving the next customer with probability (1 − p). We construct the mathematical model and derive the steady-state distribution of the server state and the number of customers in the system/orbit. Such a model has potential application in transfer model of e-mail system.  相似文献   

17.
The main aim of this paper is to study the steady state behavior of an M/G/1-type retrial queue in which there are two flows of arrivals namely ingoing calls made by regular customers and outgoing calls made by the server when it is idle. We carry out an extensive stationary analysis of the system, including stability condition, embedded Markov chain, steady state joint distribution of the server state and the number of customers in the orbit (i.e., the retrial group) and calculation of the first moments. We also obtain light-tailed asymptotic results for the number of customers in the orbit. We further formulate a more complicate but realistic model where the arrivals and the service time distributions are modeled in terms of the Markovian arrival process (MAP) and the phase (PH) type distribution.  相似文献   

18.
This paper studies the vacation policies of an M/G/1 queueing system with server breakdowns, startup and closedown times, in which the length of the vacation period is controlled either by the number of arrivals during the vacation period, or by a timer. After all the customers are served in the queue exhaustively, the server is shutdown (deactivates) by a closedown time. At the end of the shutdown time, the server immediately takes a vacation and operates two different policies: (i) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or the waiting time of the leading customer reaches T units; and (ii) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or T time units have elapsed since the end of the closedown time. If the timer expires or the number of arrivals exceeds the threshold N, then the server reactivates and requires a startup time before providing the service until the system is empty. If some customers arrive during this closedown time, the service is immediately started without leaving for a vacation and without a startup time. We analyze the system characteristics for each scheme.  相似文献   

19.
有Bernoulli休假和可选服务的M/G/1重试反馈排队模型   总被引:1,自引:0,他引:1  
考虑具有可选服务的M/G/1重试反馈排队模型,其中服务台有Bernoulli休假策略.系统外新到达的顾客服从参数为λ的泊松过程.重试区域只允许队首顾客重试,重试时间服从一般分布.所有的顾客都必须接受必选服务,然而只有其中部分接受可选服务.每个顾客每次被服务完成后可以离开系统或者返回到重试区域.服务台完成一次服务以后,可以休假也可以继续为顾客服务.通过嵌入马尔可夫链法证明了系统稳态的充要条件.利用补充变量的方法得到了稳态时系统和重试区域中队长分布.我们还得到了重试期间服务台处于空闲的概率,重试区域为空的概率以及其他各种指标.并证出在系统中服务员休假和服务台空闲的时间定义为广义休假情况下也具有随机分解特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号