首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 75 毫秒
1.
For generalized eigenvalue problems, we consider computing all eigenvalues located in a certain region and their corresponding eigenvectors. Recently, contour integral spectral projection methods have been proposed for solving such problems. In this study, from the analysis of the relationship between the contour integral spectral projection and the Krylov subspace, we conclude that the Rayleigh–Ritz-type of the contour integral spectral projection method is mathematically equivalent to the Arnoldi method with the projected vectors obtained from the contour integration. By this Arnoldi-based interpretation, we then propose a block Arnoldi-type contour integral spectral projection method for solving the eigenvalue problem.  相似文献   

2.
The Rayleigh–Ritz and the inverse iteration methods are used in order to compute the eigenvalues of Fredholm–Stieltjes integral equations, i.e. Fredholm equations with respect to suitable Stieltjes-type measures. Some applications to the so-called ‘charged’ (in German ‘belastete’) integral equation, and particularly the problem of computing the eigenvalues of a string charged by a finite number of cursors are given.  相似文献   

3.
This note summarizes an investigation of harmonic Ritz values to approximate the interior eigenvalues of a real symmetric matrix A while avoiding the explicit use of the inverse A?1. We consider a bounded functional ψ that yields the reciprocals of the harmonic Ritz values of a symmetric matrix A. The crucial observation is that with an appropriate residual s, many results from Rayleigh quotient and Rayleigh–Ritz theory naturally extend. The same is true for the generalization to matrix pencils (A, B) when B is symmetric positive definite. These observations have an application in the computation of eigenvalues in the interior of the spectrum of a large sparse matrix. The minimum and maximum of ψ correspond to the eigenpairs just to the left and right of zero (or a chosen shift). As a spectral transformation, this distinguishes ψ from the original harmonic approach where an interior eigenvalue remains at the interior of the transformed spectrum. As a consequence, ψ is a very attractive vehicle for a matrix‐free, optimization‐based eigensolver. Instead of computing the smallest/largest eigenvalues by minimizing/maximizing the Rayleigh quotient, one can compute interior eigenvalues as the minimum/maximum of ψ. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The Rayleigh quotient is unarguably the most important function used in the analysis and computation of eigenvalues of symmetric matrices. The Rayleigh-Ritz method finds the stationary values of the Rayleigh quotient, called Ritz values, on a given trial subspace as optimal, in some sense, approximations to eigenvalues.In the present paper, we derive upper bounds for proximity of the Ritz values in terms of the proximity of the trial subspaces without making an assumption that the trial subspace is close to an invariant subspace. The main result is that the absolute value of the perturbations in the Ritz values is bounded by a constant times the gap between the original trial subspace and its perturbation. The constant is the spread in the matrix spectrum, i.e. the difference between the largest and the smallest eigenvalues of the matrix. It’s shown that the constant cannot be improved. We then generalize this result to arbitrary unitarily invariant norms, but we have to increase the constant by a factor of .Our results demonstrate, in particular, the stability of the Ritz values with respect to a perturbation in the trial subspace.  相似文献   

5.
After reviewing the harmonic Rayleigh–Ritz approach for the standard and generalized eigenvalue problem, we discuss several extraction processes for subspace methods for the polynomial eigenvalue problem. We generalize the harmonic and refined Rayleigh–Ritz approaches which lead to new approaches to extract promising approximate eigenpairs from a search space. We give theoretical as well as numerical results of the methods. In addition, we study the convergence of the Jacobi–Davidson method for polynomial eigenvalue problems with exact and inexact linear solves and discuss several algorithmic details. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Two methods to obtain lower bounds to eigenvalues are presented for cases which have equivalent minimum variational formulations. One method is an extension and elaboration of a theorem presented by the author in 1972, which affected the transfer of a weight function from one location to another over the physical system considered. The extension relies on information known a-priori about the exact solution of the problem, although the exact solution is not obtained. The other method is akin to the Rayleigh–Ritz method but yields lower bounds. The two methods are applied to various physical examples of vibrations and of buckling with rather good results. The application to other examples is direct and may be performed in a way quite similar to those examples shown.  相似文献   

7.
A numerical algorithm is presented to solve the constrained weighted energy problem from potential theory. As one of the possible applications of this algorithm, we study the convergence properties of the rational Lanczos iteration method for the symmetric eigenvalue problem. The constrained weighted energy problem characterizes the region containing those eigenvalues that are well approximated by the Ritz values. The region depends on the distribution of the eigenvalues, on the distribution of the poles, and on the ratio between the size of the matrix and the number of iterations. Our algorithm gives the possibility of finding the boundary of this region in an effective way.We give numerical examples for different distributions of poles and eigenvalues and compare the results of our algorithm with the convergence behavior of the explicitly performed rational Lanczos algorithm.  相似文献   

8.
On the way to establishing a commutative analog to the Gelfand-Kirillov theorem in Lie theory, Kostant and Wallach produced a decomposition of M(n) which we will describe in the language of linear algebra. The “Ritz values” of a matrix are the eigenvalues of its leading principal submatrices of order m=1,2,…,n. There is a unique unit upper Hessenberg matrix H with those eigenvalues. For real symmetric matrices with interlacing Ritz values, we extend their analysis to allow eigenvalues at successive levels to be equal. We also decide whether given Ritz values can come from a tridiagonal matrix.  相似文献   

9.
We propose subspace methods for three‐parameter eigenvalue problems. Such problems arise when separation of variables is applied to separable boundary value problems; a particular example is the Helmholtz equation in ellipsoidal and paraboloidal coordinates. While several subspace methods for two‐parameter eigenvalue problems exist, their extensions to a three‐parameter setting seem challenging. An inherent difficulty is that, while for two‐parameter eigenvalue problems, we can exploit a relation to Sylvester equations to obtain a fast Arnoldi‐type method, such a relation does not seem to exist when there are three or more parameters. Instead, we introduce a subspace iteration method with projections onto generalized Krylov subspaces that are constructed from scratch at every iteration using certain Ritz vectors as the initial vectors. Another possibility is a Jacobi–Davidson‐type method for three or more parameters, which we generalize from its two‐parameter counterpart. For both approaches, we introduce a selection criterion for deflation that is based on the angles between left and right eigenvectors. The Jacobi–Davidson approach is devised to locate eigenvalues close to a prescribed target; yet, it often also performs well when eigenvalues are sought based on the proximity of one of the components to a prescribed target. The subspace iteration method is devised specifically for the latter task. The proposed approaches are suitable especially for problems where the computation of several eigenvalues is required with high accuracy. MATLAB implementations of both methods have been made available in the package MultiParEig (see http://www.mathworks.com/matlabcentral/fileexchange/47844-multipareig ).  相似文献   

10.
This paper discusses techniques for computing a few selected eigenvalue–eigenvector pairs of large and sparse symmetric matrices. A recently developed class of techniques to solve this type of problems is based on integrating the matrix resolvent operator along a complex contour that encloses the interval containing the eigenvalues of interest. This paper considers such contour integration techniques from a domain decomposition viewpoint and proposes two schemes. The first scheme can be seen as an extension of domain decomposition linear system solvers in the framework of contour integration methods for eigenvalue problems, such as FEAST. The second scheme focuses on integrating the resolvent operator primarily along the interface region defined by adjacent subdomains. A parallel implementation of the proposed schemes is described, and results on distributed computing environments are reported. These results show that domain decomposition approaches can lead to reduced run times and improved scalability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号