首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
When solving the one-dimensional cutting stock problem (1D CSP) as an integer linear programming problem one has to overcome computational difficulties arising from the integrality condition and a huge number of variables. In the Gilmore–Gomory approach the corresponding continuous relaxation is solved via column generation techniques followed by an appropriate rounding of the in general non-integer solution. Obviously, there is no guarantee of obtaining an optimal solution in this way but it is extremely effective in practice. However, in two- and three-dimensional cutting stock problems the heuristics are not so good which necessitates the research of effective exact methods. In this paper we present an exact solution approach for the 1D CSP which is based on a combination of the cutting plane method and the column generation technique. Results of extensive computational experiments are reported.  相似文献   

2.
We investigate the two-stage guillotine two-dimensional cutting stock problem. This problem commonly arises in the industry when small rectangular items need to be cut out of large stock sheets. We propose an integer programming formulation that extends the well-known Gilmore and Gomory model by explicitly considering solutions that are obtained by both slitting some stock sheets down their widths and others down their heights. To solve this model, we propose an exact branch-and-price algorithm. To the best of our knowledge, this is the first contribution with regard to obtaining integer optimal solutions to Gilmore and Gomory model. Extensive results, on a set of real-world problems, indicate that the proposed algorithm delivers optimal solutions for instances with up to 809 items and that the hybrid cutting strategy often yields improved solutions. Furthermore, our computational study reveals that the proposed modelling and algorithmic strategy outperforms a recently proposed arc-flow model-based solution strategy.  相似文献   

3.
The one-dimensional cutting stock problem (1D-CSP) and the two-dimensional two-stage guillotine constrained cutting problem (2D-2CP) are considered in this paper. The Gilmore–Gomory models of these problems have very strong continuous relaxations providing a good bound in an LP-based solution approach. In recent years, there have been several efforts to attack the one-dimensional problem by LP-based branch-and-bound with column generation (called branch-and-price) and by general-purpose Chvátal–Gomory cutting planes. In this paper we investigate a combination of both approaches, i.e., the LP relaxation at each branch-and-price node is strengthened by Chvátal–Gomory and Gomory mixed-integer cuts. The branching rule is that of branching on variables of the Gilmore–Gomory formulation. Tests show that, for 1D-CSP, general-purpose cuts are useful only in exceptional cases. However, for 2D-2CP their combination with branching is more effective than either approach alone and mostly better than other methods from the literature.  相似文献   

4.
This study proposes an efficient exact algorithm for the precedence-constrained single-machine scheduling problem to minimize total job completion cost where machine idle time is forbidden. The proposed algorithm is based on the SSDP (Successive Sublimation Dynamic Programming) method and is an extension of the authors’ previous algorithms for the problem without precedence constraints. In this method, a lower bound is computed by solving a Lagrangian relaxation of the original problem via dynamic programming and then it is improved successively by adding constraints to the relaxation until the gap between the lower and upper bounds vanishes. Numerical experiments will show that the algorithm can solve all instances with up to 50 jobs of the precedence-constrained total weighted tardiness and total weighted earliness–tardiness problems, and most instances with 100 jobs of the former problem.  相似文献   

5.
The multi-item, single-level, capacitated, dynamic lot-sizing problem, commonly abbreviated as CLSP, is considered. The problem is cast in a tight mixed-integer programming model (MIP); tight in the sense that the gap between the optimal value of MIP and that of its linear programming relaxation (LP) is small. The LP relaxation of MIP is then solved by column generation. The resulting feasible solution is further improved by adopting the corresponding set-up schedule and re-optimizing variable costs by solving a minimum-cost network flow (trans-shipment) problem. Subsequently, the improved solution is used as a starting solution for a tabu search procedure, with the worth of moves assessed using the same trans-shipment problem. Results of computational testing of benchmark problem instances are presented. They show that the heuristic solutions obtained are effective, in that they are extremely close to the best known solutions. The computational efficiency makes it possible to solve realistically large problem instances routinely on a personal computer; in particular, the solution procedure is most effective, in terms of solution quality, for larger problem instances.  相似文献   

6.
We develop exact algorithms for multi-objective integer programming (MIP) problems. The algorithms iteratively generate nondominated points and exclude the regions that are dominated by the previously-generated nondominated points. One algorithm generates new points by solving models with additional binary variables and constraints. The other algorithm employs a search procedure and solves a number of models to find the next point avoiding any additional binary variables. Both algorithms guarantee to find all nondominated points for any MIP problem. We test the performance of the algorithms on randomly-generated instances of the multi-objective knapsack, multi-objective shortest path and multi-objective spanning tree problems. The computational results show that the algorithms work well.  相似文献   

7.
0–1 problems are often difficult to solve. Although special purpose algorithms (exact as well as heuristic) exist for solving particular problem classes or problem instances, there are few general purpose algorithms for solving practical-sized instances of 0–1 problems. This paper deals with a general purpose heuristic algorithm for 0–1 problems. In this paper, we compare two methods based on simulated annealing for solving general 0–1 integer programming problems. The two methods differe in the scheme used for neighbourhood transitions in the simulated annealing framework. We compare the performance of the two methods on the set partitioning problem.  相似文献   

8.
A flexible manufacturing cell consisting of two machining centres, several automated storage/retrieval stations, and a mobile transporting robot is considered. The problem is to schedule jobs on machines so as to minimize the makespan, with the effects of transportation and set-ups to be taken into account. The problem is studied with the aid of a graph model, and an exact algorithm of cubic complexity is derived based on the Gilmore–Gomory algorithm for the travelling salesman problem.  相似文献   

9.
10.
This paper deals with the job-shop scheduling problem with sequence-dependent setup times. We propose a new method to solve the makespan minimization problem to optimality. The method is based on iterative solving via branch and bound decisional versions of the problem. At each node of the branch and bound tree, constraint propagation algorithms adapted to setup times are performed for domain filtering and feasibility check. Relaxations based on the traveling salesman problem with time windows are also solved to perform additional pruning. The traveling salesman problem is formulated as an elementary shortest path problem with resource constraints and solved through dynamic programming. This method allows to close previously unsolved benchmark instances of the literature and also provides new lower and upper bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号