首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
In this paper we construct the conservation laws for the Camassa–Holm equation, the Dullin–Gottwald–Holm equation (DGH) and the generalized Dullin–Gottwald–Holm equation (generalized DGH). The variational derivative approach is used to derive the conservation laws. Only first order multipliers are considered. Two multipliers are obtained for the Camassa–Holm equation. For the DGH and generalized DGH equations the variational derivative approach yields two multipliers; thus two conserved vectors are obtained.  相似文献   

2.
The completely integrable Hamiltonian systems discovered by Calogero and FranÇoise contain the finite-dimensional reductions of the Camassa–Holm and Hunter–Saxton equations. We show that the associated spectral problem has the same form as that of the periodic discrete Camassa–Holm equation. The flow is linearized by the Abel map on a hyperelliptic curve. For two-particle systems, which correspond to genus-1 curves, explicit solutions are obtained in terms of the Weierstrass elliptic functions.  相似文献   

3.
We consider the problem of the existence of the global solutions and formation of singularities for a b-family of equations which includes the Camassa–Holm and Degasperis–Procesi equation. We also consider the problem of the uniformly continuity of Degasperis–Procesi equation.  相似文献   

4.
A three-component generalization of Camassa–Holm equation with peakon solutions is proposed, which is associated with a 3×3 matrix spectral problem with three potentials. With the aid of the zero-curvature equation, we derive a hierarchy of new nonlinear evolution equations and establish their Hamiltonian structures. The three-component generalization of Camassa–Holm equation is exactly a negative flow in the hierarchy and admits exact solutions with N-peakons and an infinite sequence of conserved quantities.  相似文献   

5.
The Camassa–Holm equation possesses well-known peaked solitary waves that are called peakons. Their orbital stability has been established by Constantin and Strauss in [A. Constantin, W. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000) 603–610]. We prove here the stability of ordered trains of peakons. We also establish a result on the stability of multipeakons.  相似文献   

6.
In this paper, we provide a blow-up mechanism to the modified Camassa–Holm equation with varying linear dispersion. We first consider the case when linear dispersion is absent and derive a finite-time blow-up result with an initial data having a region of mild oscillation. A key feature of the analysis is the development of the Burgers-type inequalities with focusing property on characteristics, which can be deduced from tracing the ratio between solution and its gradient. Using the continuity and monotonicity of the solutions, we then extend this blow-up criterion to the case of negative linear dispersion, and determine that the finite time blow-up can still occur if the initial momentum density is bounded below by the magnitude of the linear dispersion and the initial datum has a local mild-oscillation region. Finally, we demonstrate that in the case of non-negative linear dispersion the formation of singularities can be induced by an initial datum with a sufficiently steep profile. In contrast to the Camassa–Holm equation with linear dispersion, the effect of linear dispersion of the modified Camassa–Holm equation on the blow-up phenomena is rather delicate.  相似文献   

7.
We discuss direct and inverse spectral theory for the isospectral problem of the dispersionless Camassa–Holm equation, where the weight is allowed to be a finite signed measure. In particular, we prove that this weight is uniquely determined by the spectral data and solve the inverse spectral problem for the class of measures which are sign definite. The results are applied to deduce several facts for the dispersionless Camassa–Holm equation. In particular, we show that initial conditions with integrable momentum asymptotically split into a sum of peakons as conjectured by McKean.  相似文献   

8.
We consider a fifth-order partial differential equation (PDE) that is a generalization of the integrable Camassa–Holm equation. This fifth-order PDE has exact solutions in terms of an arbitrary number of superposed pulsons with a geodesic Hamiltonian dynamics that is known to be integrable in the two-body case N==2. Numerical simulations show that the pulsons are stable, dominate the initial value problem, and scatter elastically. These characteristics are reminiscent of solitons in integrable systems. But after demonstrating the nonexistence of a suitable Lagrangian or bi-Hamiltonian structure and obtaining negative results from Painlevé analysis and the Wahlquist–Estabrook method, we assert that this fifth-order PDE is not integrable.  相似文献   

9.
We establish the local well-posedness for the generalized Camassa–Holm equation. We also prove that the equation has smooth solutions that blow up in finite time.  相似文献   

10.
Many physical and scientific phenomena are modeled by nonlinear partial differential equations (NPDEs); it is difficult to handle nonlinear part of these equations. Recently some analytical methods are applied to solve such equations. In this work, modified Camassa–Holm and Degasperis–Procesi equation is studied. Adomian’s decomposition method (ADM) is applied to obtain solution of this equation. The results are compared to those of homotopy perturbation method (HPM) and exact solution. The study highlights the significant features of the employed method and its ability to handle nonlinear partial differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号