首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
We consider a single server system consisting of e queues with different types of customers (Poisson streams) andk permanent customers. The permanent customers and those at the head of the queues are served in processor-sharing by the service facility (head-of-the-line processor-sharing). The stability condition and a pseudo work conservation law will be given for arbitrary service time distributions; for exponential service times a pseudo conservation law for the mean sojourn tunes can be derived. In case of two queues and exponential service times, the generating function of the stationary occupancy distribution satisfies a functional equation being a Riemann-Hilbert problem which can be reduced to a Dirichlet problem for a circle. The solution yields the mean sojourn times as an elliptic integral, which can be computed numerically very efficiently. In case ofn 2 a numerical algorithm for computing the performance measures is presented, which is efficient forn 3. Since forn 4 an exact analytical or/and numerical treatment is too complex a heuristic approximation for the mean sojourn times of the different types of customers is given, which in case of a (completely) symmetric system is exact. The numerical and simulation results show that, over a wide range of parameters, the approximation works well.This work was supported by a grant from the Siemens AG.  相似文献   

2.
We consider a multi-queue multi-server system with n servers (processors) and m queues. At the system there arrives a stationary and ergodic stream of m different types of requests with service requirements which are served according to the following k-limited head of the line processor sharing discipline: The first k requests at the head of the m queues are served in processor sharing by the n processors, where each request may receive at most the capacity of one processor. By means of sample path analysis and Loynes’ monotonicity method, a stationary and ergodic state process is constructed, and a necessary as well as a sufficient condition for the stability of the m separate queues are given, which are tight within the class of all stationary ergodic inputs. These conditions lead to tight necessary and sufficient conditions for the whole system, also in case of permanent customers, generalizing an earlier result by the authors for the case of n=k=1. This work was supported by a grant from the Siemens AG.  相似文献   

3.
4.
This paper considers a class of stationary batch-arrival, bulk-service queues with generalized vacations. The system consists of a single server and a waiting room of infinite capacity. Arrivals of customers follow a batch Markovian arrival process. The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in groups of fixed size B. For this class of queues, we show that the vector probability generating function of the stationary queue length distribution is factored into two terms, one of which is the vector probability generating function of the conditional queue length distribution given that the server is on vacation. The special case of batch Poisson arrivals is carefully examined, and a new stochastic decomposition formula is derived for the stationary queue length distribution.AMS subject classification: 60K25, 90B22, 60K37  相似文献   

5.
Roy D. Yates 《Queueing Systems》1994,18(1-2):107-116
A class of discrete-timeM/G/1 queues, including both round robin and last come first served service, in which customers are subject to permutations is considered. These time slotted queues, analogous to the symmetric queues of Kelly, are analyzed by examination of the time reversed process. Product form stationary distributions are found for a type of doubly stochastic server of Schassberger [5] and for a Bernoulli arrival process queue model of Henderson and Taylor [2].  相似文献   

6.
We are concerned with the insensitivity of the stationary distributions of the system states inM/G/s/m queues with multiclass customers and with LIFO preemptive resume service disciplines. We introduce general entrance and exit rules into and from waiting positions, respectively, for the behaviour of waiting customers whose service is interrupted. These rules may, roughly speaking, depend on the number of customers in the system. It is shown that the stationary distribution of the system state is insensitive not only with respect to the service time distributions but also with respect to the general entrance and exit rules. As well as the insensitivity of the service scheme, our results are obtained for a special form of state and customer type dependent arrival and service rates. Some further results are concluded related to insensitivity like the formula for the conditional mean sojourn time and the property of transformation of a Poisson input into a Poisson output by the systems.  相似文献   

7.
In this note we consider two queueing systems: a symmetric polling system with gated service at allN queues and with switchover times, and a single-server single-queue model with one arrival stream of ordinary customers andN additional permanently present customers. It is assumed that the combined arrival process at the queues of the polling system coincides with the arrival process of the ordinary customers in the single-queue model, and that the service time and switchover time distributions of the polling model coincide with the service time distributions of the ordinary and permanent customers, respectively, in the single-queue model. A complete equivalence between both models is accomplished by the following queue insertion of arriving customers. In the single-queue model, an arriving ordinary customer occupies with probabilityp i a position at the end of the queue section behind theith permanent customer,i = l, ...,N. In the cyclic polling model, an arriving customer with probabilityp i joins the end of theith queue to be visited by the server, measured from its present position.For the single-queue model we prove that, if two queue insertion distributions {p i, i = l, ...,N} and {q i, i = l, ...,N} are stochastically ordered, then also the workload and queue length distributions in the corresponding two single-queue versions are stochastically ordered. This immediately leads to equivalent stochastic orderings in polling models.Finally, the single-queue model with Poisson arrivals andp 1 = 1 is studied in detail.Part of the research of the first author has been supported by the Esprit BRA project QMIPS.  相似文献   

8.
In this paper we consider a single server queue in which arrivals occur according to a Poisson process and each customer's service time is exponentially distributed. The server works according to the gated process-sharing discipline. In this discipline, the server provides service to a batch of at mostm customers at a time. Once a batch of customers begins service, no other waiting customer can receive service until all members of the batch have completed their service. For this queue, we derive performance characteristics, such as waiting time distribution, queue length distribution etc. For this queue, it is possible to obtain the mean conditional response time for a customer whose service time is known. This conditional response time is a nonlinear function (as opposed to the linear case for the ordinary processor-sharing queue). A special case of the queue (wherem=) has an interesting and unusual solution. For this special case, the size of the batch for service is a Markov chain whose steady state distribution can be explicitly written down. Apart from the contribution to the theory of Markov chains and queues, the model may be applicable to scheduling of computer and communication systems.  相似文献   

9.
We consider several multi-server retrial queueing models with exponential retrial times that arise in the literature of retrial queues. The effect of retrial rates on the behavior of the queue length process is investigated via sample path approach. We show that the number of customers in orbit and in the system as a whole are monotonically changed if the retrial rates in one system are bounded by the rates in second one. The monotonicity results are applied to show the convergence of generalized truncated systems that have been widely used for approximating the stationary queue length distribution in retrial queues. AMS subject classifications: Primary 60K25  相似文献   

10.
Previously established necessary and sufficient conditions for finite stationary moments in stable FIFO GI/GI/s queues exist only for the first component of the workload vector, the delay, and the final component, which behaves as the total work in the system. In this paper, we derive moment results for all the components of the stationary workload vector in stable FIFO GI/GI/s queues. As in the case of stationary delay, the moment conditions for workload components incorporate the interaction between service-time distribution, traffic intensity and the number of servers in the queue.  相似文献   

11.
Consider a symmetrical system of n queues served in cyclic order by a single server. It is shown that the stationary number of customers in the system is distributed as the sum of three independent random variables, one being the stationary number of customers in a standard M/G/1 queue. This fact is used to establish an upper bound for the mean waiting time for the case where at most k customers are served at each queue per visit by the server. This approach is also used to rederive the mean waiting times for the cases of exhaustive service, gated service, and serve at most one customer at each queue per visit by the server.  相似文献   

12.
A diffusion approximation is developed for general multiserver queues with finite waiting spaces, which are typical models of manufacturing systems as well as computer and communication systems. The model is the standard GI/G/s/s + r queue with s identical servers in parallel, r extra waiting spaces, and the first-come, first-served discipline. The main focus is on the steady-state distribution of the number of customers in the system. The process of the number of customers is approximated by a time-homogeneous diffusion process on a closed interval in the nonnegative real line. A conservation law plus some heuristics standing on solid theoretical ground generate approximation formulas for the steady-state distribution and other congestion measures. These formulas are consistent with the exact results for the M/G/s/s and M/M/s/s + r queues. The accuracy of approximations for principal congestion measures are numerically examined for some particular cases.  相似文献   

13.
In this paper martingales methods are applied for analyzing limit non-stationary behavior of the queue length processes in closed Jackson queueing networks with a single class consisting of a large number of customers, a single infinite server queue, and a fixed number of single server queues with large state independent service rates. It is assumed that one of the single server nodes forms a bottleneck. For the non-bottleneck nodes we show that the queue length distribution at timet converges in generalized sense to the stationary distribution of the M/M/1 queue whose parameters explicitly depend ont. For the bottleneck node a diffusion approximation with reflection is proved in the moderate usage regime while fluid and Gaussian diffusion approximations are established for the heavy usage regime.  相似文献   

14.
We consider basic M/M/c/c (c≥1) retrial queues where the number of busy servers and that of customers in the orbit form a level-dependent quasi-birth-and-death (QBD) process with a special structure. Based on this structure and a matrix continued fraction approach, we develop an efficient algorithm to compute the joint stationary distribution of the numbers of busy servers and retrial customers. Through numerical experiments, we demonstrate that our algorithm works well even for M/M/c/c retrial queues with large value of c.  相似文献   

15.
We consider Kelly networks with shuffling of customers within each queue. Specifically, each arrival, departure or movement of a customer from one queue to another triggers a shuffle of the other customers at each queue. The shuffle distribution may depend on the network state and on the customer that triggers the shuffle. We prove that the stationary distribution of the network state remains the same as without shuffling. In particular, Kelly networks with shuffling have the product form. Moreover, the insensitivity property is preserved for symmetric queues.   相似文献   

16.
We consider a 2-class queueing system, operating under a generalized processor-sharing discipline. The arrival rate to the secondary queue is much smaller than that to the primary queue, while the exponentially distributed service requirements have comparable parameters. The primary queue is assumed to be heavily loaded, so the processor-sharing factor for the secondary queue is assumed to be relatively small. We use singular perturbation analyses in a small parameter measuring the ratio of arrival rates, and the closeness of the system to instability. Two different regimes are analyzed, corresponding to a heavily loaded and a lightly loaded secondary queue, respectively. With suitable scaling of variables, lowest order asymptotic approximations to the joint stationary distribution of the numbers of jobs in the two queues are derived, as well as to the marginal distributions.  相似文献   

17.
A ring of I cells rotates past I queues, carrying customers from their origins to their destinations. The system is modelled as a Markov chain, and the exact ergodicity conditions are given. They are shown to depend on the precise travel lengths distributions, that is, not only on their means. Ergodicity is proven through the stability analysis of the associated fluid limits. The arrivals distributions, which in the ergodicity conditions appear only through their means, are more subtly involved in the fluid limits behaviour, in that they determine the probabilities of random bifurcations that occur infinitely often in a simple system of I=2 queues.  相似文献   

18.
Li  Quan-Lin  Zhao  Yiqiang Q. 《Queueing Systems》2004,47(1-2):5-43
In this paper, we consider a MAP/G/1 queue with MAP arrivals of negative customers, where there are two types of service times and two classes of removal rules: the RCA and RCH, as introduced in section 2. We provide an approach for analyzing the system. This approach is based on the classical supplementary variable method, combined with the matrix-analytic method and the censoring technique. By using this approach, we are able to relate the boundary conditions of the system of differential equations to a Markov chain of GI/G/1 type or a Markov renewal process of GI/G/1 type. This leads to a solution of the boundary equations, which is crucial for solving the system of differential equations. We also provide expressions for the distributions of stationary queue length and virtual sojourn time, and the Laplace transform of the busy period. Moreover, we provide an analysis for the asymptotics of the stationary queue length of the MAP/G/1 queues with and without negative customers.  相似文献   

19.
Rabehasaina  Landy  Woo  Jae-Kyung 《Queueing Systems》2020,94(3-4):393-420

We consider a general k-dimensional discounted infinite server queueing process (alternatively, an incurred but not reported claim process) where the multivariate inputs (claims) are given by a k-dimensional finite-state Markov chain and the arrivals follow a renewal process. After deriving a multidimensional integral equation for the moment-generating function jointly to the state of the input at time t given the initial state of the input at time 0, asymptotic results for the first and second (matrix) moments of the process are provided. In particular, when the interarrival or service times are exponentially distributed, transient expressions for the first two moments are obtained. Also, the moment-generating function for the process with deterministic interarrival times is considered to provide more explicit expressions. Finally, we demonstrate the potential of the present model by showing how it allows us to study semi-Markovian modulated infinite server queues where the customers (claims) arrival and service (reporting delay) times depend on the state of the process immediately before and at the switching times.

  相似文献   

20.
We consider the M/G/1 queue under the foreground-background processor-sharing discipline. Using a result on the stationary distribution of the total number of customers we give a direct derivation of the distribution of the random counting measure representing the steady state of the queue in all detail.This work was done during a sabbatical at INRIA, France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号