首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Yu, Wang, Wu and Ye call a semigroup \(S\) \(\tau \) -congruence-free, where \(\tau \) is an equivalence relation on \(S\) , if any congruence \(\rho \) on \(S\) is either disjoint from \(\tau \) or contains \(\tau \) . A congruence-free semigroup is then just an \(\omega \) -congruence-free semigroup, where \(\omega \) is the universal relation. They determined the completely regular semigroups that are \(\tau \) -congruence-free with respect to each of the Green’s relations. The goal of this paper is to extend their results to all regular semigroups. Such a semigroup is \(\mathrel {\mathcal {J}}\) -congruence-free if and only if it is either a semilattice or has a single nontrivial \(\mathrel {\mathcal {J}}\) -class, \(J\) , say, and either \(J\) is a subsemigroup, in which case it is congruence-free, or otherwise its principal factor is congruence-free. Given the current knowledge of congruence-free regular semigroups, this result is probably best possible. When specialized to completely semisimple semigroups, however, a complete answer is obtained, one that specializes to that of Yu et al. A similar outcome is obtained for \(\mathrel {\mathcal {L}}\) and \(\mathrel {\mathcal {R}}\) . In the case of \(\mathrel {\mathcal {H}}\) , only the completely semisimple case is fully resolved, again specializing to those of Yu et al.  相似文献   

2.
Let \(G\) be a connected Lie group and \(S\) a generating Lie semigroup. An important fact is that generating Lie semigroups admit simply connected covering semigroups. Denote by \(\widetilde{S}\) the simply connected universal covering semigroup of \(S\) . In connection with the problem of identifying the semigroup \(\Gamma (S)\) of monotonic homotopy with a certain subsemigroup of the simply connected covering semigroup \(\widetilde{S}\) we consider in this paper the following subsemigroup $$\begin{aligned} \widetilde{S}_{L}=\overline{\left\langle \mathrm {Exp}(\mathbb {L} (S))\right\rangle } \subset \widetilde{S}, \end{aligned}$$ where \(\mathrm {Exp}:\mathbb {L}(S)\rightarrow S\) is the lifting to \( \widetilde{S}\) of the exponential mapping \(\exp :\mathbb {L}(S)\rightarrow S\) . We prove that \(\widetilde{S}_{L}\) is also simply connected under the assumption that the Lie semigroup \(S\) is right reversible. We further comment how this result should be related to the identification problem mentioned above.  相似文献   

3.
We introduce and characterize two types of interpolating sequences in the unit disc \(\mathbb {D}\) of the complex plane for the class of all functions being the product of two analytic functions in \(\mathbb {D}\) , one bounded and another regular up to the boundary of \(\mathbb {D}\) , concretely in the Lipschitz class, and at least one of them vanishing at some point of \(\overline {\mathbb {D}}\) .  相似文献   

4.
5.
Let \({\mathcal {C}}\) be a class of finite groups. We study some sufficient conditions for the pro- \({\mathcal {C}}\) completion of an orientable \(\text{ PD }^3\) -pair over \(\mathbb {Z}\) to be an orientable profinite \(\text{ PD }^3\) -pair over \(\mathbb {F}_p\) . More results are proven for the pro- \(p\) completion of \(\text{ PD }^3\) -pairs.  相似文献   

6.
We use certain strong Q-reducibilities, and their corresponding strong positive reducibilities, to characterize the hyperimmune sets and the hyperhyperimmune sets: if A is any infinite set then A is hyperimmune (respectively, hyperhyperimmune) if and only if for every infinite subset B of A, one has ${\overline{K}\not\le_{\rm ss} B}$ (respectively, ${\overline{K}\not\le_{\overline{\rm s}} B}$ ): here ${\le_{\overline{\rm s}}}$ is the finite-branch version of s-reducibility, ??ss is the computably bounded version of ${\le_{\overline{\rm s}}}$ , and ${\overline{K}}$ is the complement of the halting set. Restriction to ${\Sigma^0_2}$ sets provides a similar characterization of the ${\Sigma^0_2}$ hyperhyperimmune sets in terms of s-reducibility. We also show that no ${A \geq_{\overline{\rm s}}\overline{K}}$ is hyperhyperimmune. As a consequence, ${\deg_{\rm s}(\overline{K})}$ is hyperhyperimmune-free, showing that the hyperhyperimmune s-degrees are not upwards closed.  相似文献   

7.
Each integrable lowest weight representation of a symmetrizable Kac-Moody Lie algebra \(\mathfrak{g}\) has a crystal in the sense of Kashiwara, which describes its combinatorial properties. For a given \(\mathfrak{g}\) , there is a limit crystal, usually denoted by B(?∞), which contains all the other crystals. When \(\mathfrak{g}\) is finite dimensional, a convex polytope, called the Mirkovi?-Vilonen polytope, can be associated to each element in B(?∞). This polytope sits in the dual space of a Cartan subalgebra of \(\mathfrak{g}\) , and its edges are parallel to the roots of \(\mathfrak{g}\) . In this paper, we generalize this construction to the case where \(\mathfrak{g}\) is a symmetric affine Kac-Moody algebra. The datum of the polytope must however be complemented by partitions attached to the edges parallel to the imaginary root δ. We prove that these decorated polytopes are characterized by conditions on their normal fans and on their 2-faces. In addition, we discuss how our polytopes provide an analog of the notion of Lusztig datum for affine Kac-Moody algebras. Our main tool is an algebro-geometric model for B(?∞) constructed by Lusztig and by Kashiwara and Saito, based on representations of the completed preprojective algebra Λ of the same type as  \(\mathfrak{g}\) . The underlying polytopes in our construction are described with the help of Buan, Iyama, Reiten and Scott’s tilting theory for the category \(\Lambda \text {\upshape -}\mathrm {mod}\) . The partitions we need come from studying the category of semistable Λ-modules of dimension-vector a multiple of δ.  相似文献   

8.
Let \(X\) be a Hermitian complex space of pure dimension with only isolated singularities and \(\pi : M\rightarrow X\) a resolution of singularities. Let \(\Omega \subset \subset X\) be a domain with no singularities in the boundary, \(\Omega ^*=\Omega {\setminus }\!{{\mathrm{Sing}}}X\) and \(\Omega '=\pi ^{-1}(\Omega )\) . We relate \(L^2\) -properties of the \(\overline{\partial }\) and the \(\overline{\partial }\) -Neumann operator on \(\Omega ^*\) to properties of the corresponding operators on \(\Omega '\) (where the situation is classically well understood). Outside some middle degrees, there are compact solution operators for the \(\overline{\partial }\) -equation on \(\Omega ^*\) exactly if there are such operators on the resolution \(\Omega '\) , and the \(\overline{\partial }\) -Neumann operator is compact on \(\Omega ^*\) exactly if it is compact on \(\Omega '\) .  相似文献   

9.
For a graph G and a set \({\mathcal{F}}\) of connected graphs, G is said be \({\mathcal{F}}\) -free if G does not contain any member of \({\mathcal{F}}\) as an induced subgraph. We let \({\mathcal{G} _{3}(\mathcal{F})}\) denote the set of all 3-connected \({\mathcal{F}}\) -free graphs. This paper is concerned with sets \({\mathcal{F}}\) of connected graphs such that \({\mathcal{F}}\) contains no star, \({|\mathcal{F}|=3}\) and \({\mathcal{G}_{3}(\mathcal{F})}\) is finite. Among other results, we show that for a connected graph T( ≠ K 1) which is not a star, \({\mathcal{G}_{3}(\{K_{4},K_{2,2},T\})}\) is finite if and only if T is a path of order at most 6.  相似文献   

10.
Let \(\mathfrak {g}\) be a symmetrizable Kac-Moody Lie algebra with the standard Cartan subalgebra \(\mathfrak {h}\) and the Weyl group \(W\) . Let \(P_+\) be the set of dominant integral weights. For \(\lambda \in P_+\) , let \(L(\lambda )\) be the integrable, highest weight (irreducible) representation of \(\mathfrak {g}\) with highest weight \(\lambda \) . For a positive integer \(s\) , define the saturated tensor semigroup as $$\begin{aligned} \Gamma _s:= \{(\lambda _1, \dots , \lambda _s,\mu )\in P_+^{s+1}: \exists \, N\ge 1 \,\text {with}\,L(N\mu )\subset L(N\lambda _1)\otimes \dots \otimes L(N\lambda _s)\}. \end{aligned}$$ The aim of this paper is to begin a systematic study of \(\Gamma _s\) in the infinite dimensional symmetrizable Kac-Moody case. In this paper, we produce a set of necessary inequalities satisfied by \(\Gamma _s\) . These inequalities are indexed by products in \(H^*(G^{\mathrm{min }}/B; \mathbb {Z})\) for \(B\) the standard Borel subgroup, where \(G^{\mathrm{min }}\) is the ‘minimal’ Kac-Moody group with Lie algebra \(\mathfrak {g}\) . The proof relies on the Kac-Moody analogue of the Borel-Weil theorem and Geometric Invariant Theory (specifically the Hilbert-Mumford index). In the case that \(\mathfrak {g}\) is affine of rank 2, we show that these inequalities are necessary and sufficient. We further prove that any integer \(d>0\) is a saturation factor for \(A^{(1)}_1\) and 4 is a saturation factor for \(A^{(2)}_2\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号