首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In paper, a predator–prey model with modified Holling–Tanner functional response and time delay is discussed. It is proved that the system is permanent under some appropriate conditions. The local stability of the equilibria is investigated. By constructing a suitable Lyapunov functional, sufficient conditions are derived for the global stability of the positive equilibrium of the model.  相似文献   

2.
In this paper, a delayed eco‐epidemiological model with Holling type II functional response is investigated. By analyzing corresponding characteristic equations, the local stability of each of the feasible equilibria and the existence of Hopf bifurcations at the disease‐free equilibrium, the susceptible predator‐free equilibrium and the endemic‐coexistence equilibrium are established, respectively. By means of Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are derived for the global stability of the endemic‐coexistence equilibrium, the disease‐free equilibrium, the susceptible predator‐free equilibrium and the predator‐extinction equilibrium of the system, respectively. Numerical simulations are carried out to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we study a diffusive predator–prey system with modified Holling–Tanner functional response under homogeneous Neumann boundary condition. The qualitative properties, including the global attractor, persistence property, local and global asymptotic stability of the unique positive constant equilibrium are obtained. We also establish the existence and nonexistence of nonconstant positive steady states of this reaction–diffusion system, which indicates the effect of large diffusivity.  相似文献   

4.
A delayed predator–prey system with Holling type II functional response and stage structure for both the predator and the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of each feasible equilibrium of the system is discussed, and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory for infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using suitable Lyapunov functions and the LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator–extinction equilibrium and the coexistence equilibrium do not exist, and that the predator–extinction equilibrium is globally stable when the coexistence equilibrium does not exist. Further, sufficient conditions are obtained for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we develop and study a stochastic predator–prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.  相似文献   

6.
In this paper, a delayed predator–prey model with Holling type II functional response incorporating a constant prey refuge and diffusion is considered. By analyzing the characteristic equation of linearized system corresponding to the model, we study the local asymptotic stability of the positive equilibrium of the system. By choosing the time delay due to gestation as a bifurcation parameter, the existence of Hopf bifurcations at the positive equilibrium is established. By applying the normal form and the center manifold theory, an explicit algorithm to determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived. Further, an example is presented to illustrate our main results. Finally, recurring to the numerical method, the influences of impulsive perturbations on the dynamics of the system are also investigated.  相似文献   

7.
In this paper, an eco-epidemiological model with diseases in the predator and Holling type-III functional response is analyzed. A time delay due to the gestation of the predator is considered in this model. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the disease-free equilibrium and the endemic-coexistence equilibrium are established respectively. By using Lyapunov functionals and LaSalle''s invariance principle, sufficient conditions are obtained for the global stability of the predator-extinction equilibrium, the disease-free equilibrium and the endemic-coexistence equilibrium respectively. Finally, numerical simulations are performed to illustrate the theoretical results.  相似文献   

8.
A diffusive predator–prey system with modified Holling–Tanner functional response and no-flux boundary condition is considered in this work. A sufficient condition which ensures persistence of the system is obtained. Furthermore, sufficient conditions for the global asymptotical stability of the unique positive equilibrium of the system are derived by using a comparison method. It is shown that our result supplements and complements one of the main results of Shi et al. [H.B. Shi, W.T. Li, G. Lin, Positive steady states of a diffusive predator–prey system with modified Holling–Tanner functional response, Nonlinear Analysis: Real World Applications 11 (2010) 3711–3721].  相似文献   

9.
In this paper, an eco‐epidemiological model with Holling type‐III functional response and a time delay representing the gestation period of the predators is investigated. In the model, it is assumed that the predator population suffers a transmissible disease. The disease basic reproduction number is obtained. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the disease‐free equilibrium and the endemic‐coexistence equilibrium are established, respectively. By using the persistence theory on infinite dimensional systems, it is proved that if the disease basic reproduction number is greater than unity, the system is permanent. By means of Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the endemic‐coexistence equilibrium, the disease‐free equilibrium and the predator‐extinction equilibrium of the system, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper deals with the dynamics of a predator-prey model with Hassell-Varley-Holling functional response. First, we show that the predator coexists with prey if and only if predator's growth ability is greater than its death rate. Second, using a blow-up technique, we prove that the origin equilibrium point is repelling and extinction of both predator and prey populations is impossible. Third, the local and global stability of the positive steady state coincide when the predator interference is large. Finally, for a typical biological case, we show instability of the positive equilibrium implies global stability of the limit cycle. Numerical simulations are carried out for a hypothetical set of parameter values to substantiate our analytical findings.  相似文献   

11.
In this paper, we investigate a diffusive predator-prey model with fear effect. It is shown that, for the linear predator functional response case,the positive constant steady state is globally asymptotically stable if it ex-ists. On the other hand, for the Holling type II predator functional response case, it is proved that there exist no nonconstant positive steady states for large conversion rate. Our results limit the parameters range where complex spatiotemporal pattern formation can occur.  相似文献   

12.
In this paper, a reaction‐diffusion predator–prey system that incorporates the Holling‐type II and a modified Leslie‐Gower functional responses is considered. For ODE, the local stability of the positive equilibrium is investigated and the specific conditions are obtained. For partial differential equation, we consider the dissipation and persistence of solutions, the Turing instability of the equilibrium solutions, and the Hopf bifurcation. By calculating the normal form, we derive the formulae, which can determine the direction and the stability of Hopf bifurcation according to the original parameters of the system. We also use some numerical simulations to illustrate our theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In a natural ecosystem, specialist predators feed almost exclusively on one specific species of prey which may be possible for a parasitoid. But generalist predators feed on many types of species. It is also well known that the predation rate increases as prey density rises, but eventually levels off due to the predator’s handling time. The response function, thereby, is often assumed to Holling II functional response. In addition, digestion processes of the predation often involve reactions with delays. In view of these facts, a three-species ecosystem with a delay digestion process and Holling functional response is formulated. By analyzing the corresponding characteristic equations, the stability of the equilibria is investigated. Furthermore, Hopf bifurcations occurring at the positive equilibrium under some conditions are demonstrated. The consequence of global stability of the positive equilibrium is that predation will not irreversibly change the system. That is, as long as preys are not made extinct by excessive predation of their predator, the system is able to recover. Numerical simulations are carried out to illustrate our theoretical results. Meanwhile, they indicate that time delay is harmless for permanence of populations even thought it has a tendency to produce oscillations.  相似文献   

14.
A stage-structured predator–prey system with Holling type-II functional response and time delay due to the gestation of predator is investigated. By analyzing the characteristic equations, the local stability of each of feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory on infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator-extinction equilibrium and the coexistence equilibrium are not feasible, and that the predator-extinction equilibrium is globally asymptotically stable if the coexistence equilibrium does not exist, and sufficient conditions are derived for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results.  相似文献   

15.
We prove the non-existence of non-constant positive steady state solutions of two reaction-diffusion predator-prey models with Holling type-II functional response when the interaction between the predator and the prey is strong. The result implies that the global bifurcating branches of steady state solutions are bounded loops.  相似文献   

16.
The disease effect on ecological systems is an important issue from mathematical and experimental point of view. In this paper, we formulate and analyze a predator–prey model for the susceptible population, infected population and their predator population with modified Leslie–Gower (or Holling–Tanner) functional response. Mathematical analysis of the model equations with regard to invariance of nonnegativity and boundedness of solutions, local and global stability of the biological feasible equilibria and permanence of the system are presented. When the rate of infection crosses a critical value, we determine that the strictly positive interior equilibrium undergoes Hopf bifurcation. From our numerical simulations, we observe that the predation rate also plays an important role on the dynamic behavior of our system.  相似文献   

17.
A three species food web comprising of two preys and one predator in an isolated homogeneous habitat is considered. The preys are assumed to grow logistically. The predator follows modified Leslie-Gower dynamics and feeds upon the prey species according to Holling Type II functional response. The local stability of the constant positive steady state of the corresponding temporal system and the spatio-temporal system are discussed. The existence and non-existence of non-constant positive steady states are investigated.  相似文献   

18.
In this paper, a diffusive predator–prey system with Holling III functional response and nonconstant death rate subject to Neumann boundary condition is considered. We study the stability of equilibria, and Turing instability of the positive equilibrium. We also perform a detailed Hopf bifurcation analysis to PDE system, and derive conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution. In addition, some numerical simulations are carried out.  相似文献   

19.
一类基于比率的捕食-食饵系统的全局稳定性分析   总被引:1,自引:0,他引:1  
研究一类基于比率和具第Ⅲ类功能性反应的捕食-食饵系统.通过分析正平衡点的局部稳定性给出了系统正平衡点全局渐近稳定以及系统存在极限环的条件.运用Hopf分支理论讨论了当正平衡点是非双曲型时的情形.  相似文献   

20.
In this paper, we consider a reaction–diffusion predator–prey model with stage-structure, Holling type-II functional response, nonlocal spatial impact and harvesting. The stability of the equilibria is investigated. Furthermore, by the cross-iteration scheme companied with a pair of admissible upper and lower solutions and Schauder fixed point theorem, we deduce the existence of traveling wave solution which connects the zero solution and the positive constant equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号