首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a finite group G, let m(G) denote the set of maximal subgroups of G and π(G) denote the set of primes which divide |G|. When G is a cyclic group, an elementary calculation proves that |m(G)| = |π(G)|. In this paper, we prove lower bounds on |m(G)| when G is not cyclic. In general, ${|m(G)| \geq |\pi(G)|+p}$ | m ( G ) | ≥ | π ( G ) | + p , where ${p \in \pi(G)}$ p ∈ π ( G ) is the smallest prime that divides |G|. If G has a noncyclic Sylow subgroup and ${q \in \pi(G)}$ q ∈ π ( G ) is the smallest prime such that ${Q \in {\rm syl}_q(G)}$ Q ∈ syl q ( G ) is noncyclic, then ${|m(G)| \geq |\pi(G)|+q}$ | m ( G ) | ≥ | π ( G ) | + q . Both lower bounds are best possible.  相似文献   

2.
We present an approximation algorithm for computing shortest paths in weighted three-dimensional domains. Given a polyhedral domain $\mathcal D $ D , consisting of $n$ n tetrahedra with positive weights, and a real number $\varepsilon \in (0,1)$ ε ∈ ( 0 , 1 ) , our algorithm constructs paths in $\mathcal D $ D from a fixed source vertex to all vertices of $\mathcal D $ D , the costs of which are at most $1+\varepsilon $ 1 + ε times the costs of (weighted) shortest paths, in $O(\mathcal{C }(\mathcal D )\frac{n}{\varepsilon ^{2.5}}\log \frac{n}{\varepsilon }\log ^3\frac{1}{\varepsilon })$ O ( C ( D ) n ε 2.5 log n ε log 3 1 ε ) time, where $\mathcal{C }(\mathcal D )$ C ( D ) is a geometric parameter related to the aspect ratios of tetrahedra. The efficiency of the proposed algorithm is based on an in-depth study of the local behavior of geodesic paths and additive Voronoi diagrams in weighted three-dimensional domains, which are of independent interest. The paper extends the results of Aleksandrov et al. (J ACM 52(1):25–53, 2005), to three dimensions.  相似文献   

3.
It is assumed that a Kripke–Joyal semantics ${\mathcal{A} = \left\langle \mathbb{C},{\rm Cov}, {\it F},\Vdash \right\rangle}$ A = C , Cov , F , ? has been defined for a first-order language ${\mathcal{L}}$ L . To transform ${\mathbb{C}}$ C into a Heyting algebra ${\overline{\mathbb{C}}}$ C ¯ on which the forcing relation is preserved, a standard construction is used to obtain a complete Heyting algebra made up of cribles of ${\mathbb{C}}$ C . A pretopology ${\overline{{\rm Cov}}}$ Cov ¯ is defined on ${\overline{\mathbb{C}}}$ C ¯ using the pretopology on ${\mathbb{C}}$ C . A sheaf ${\overline{{\it F}}}$ F ¯ is made up of sections of F that obey functoriality. A forcing relation ${\overline{\Vdash}}$ ? ¯ is defined and it is shown that ${\overline{\mathcal{A}} = \left\langle \overline{\mathbb{C}},\overline{\rm{Cov}},\overline{{\it F}}, \overline{\Vdash} \right\rangle }$ A ¯ = C ¯ , Cov ¯ , F ¯ , ? ¯ is a Kripke–Joyal semantics that faithfully preserves the notion of forcing of ${\mathcal{A}}$ A . That is to say, an object a of ${\mathbb{C}Ob}$ C O b forces a sentence with respect to ${\mathcal{A}}$ A if and only if the maximal a-crible forces it with respect to ${\overline{\mathcal{A}}}$ A ¯ . This reduces a Kripke–Joyal semantics defined over an arbitrary site to a Kripke–Joyal semantics defined over a site which is based on a complete Heyting algebra.  相似文献   

4.
Around 1958, Hill described how to draw the complete graph $K_n$ K n with $$\begin{aligned} Z(n) :=\frac{1}{4}\Big \lfloor \frac{n}{2}\Big \rfloor \Big \lfloor \frac{n-1}{2}\Big \rfloor \Big \lfloor \frac{n-2}{2}\Big \rfloor \Big \lfloor \frac{n-3}{2}\Big \rfloor \end{aligned}$$ Z ( n ) : = 1 4 ? n 2 ? ? n ? 1 2 ? ? n ? 2 2 ? ? n ? 3 2 ? crossings, and conjectured that the crossing number ${{\mathrm{cr}}}(K_{n})$ cr ( K n ) of $K_n$ K n is exactly $Z(n)$ Z ( n ) . This is also known as Guy’s conjecture as he later popularized it. Towards the end of the century, substantially different drawings of $K_{n}$ K n with $Z(n)$ Z ( n ) crossings were found. These drawings are 2-page book drawings, that is, drawings where all the vertices are on a line $\ell $ ? (the spine) and each edge is fully contained in one of the two half-planes (pages) defined by  $\ell $ ? . The 2-page crossing number of $K_{n} $ K n , denoted by $\nu _{2}(K_{n})$ ν 2 ( K n ) , is the minimum number of crossings determined by a 2-page book drawing of $K_{n}$ K n . Since ${{\mathrm{cr}}}(K_{n}) \le \nu _{2}(K_{n})$ cr ( K n ) ≤ ν 2 ( K n ) and $\nu _{2}(K_{n}) \le Z(n)$ ν 2 ( K n ) ≤ Z ( n ) , a natural step towards Hill’s Conjecture is the weaker conjecture $\nu _{2}(K_{n}) = Z(n)$ ν 2 ( K n ) = Z ( n ) , popularized by Vrt’o. In this paper we develop a new technique to investigate crossings in drawings of $K_{n}$ K n , and use it to prove that $\nu _{2}(K_{n}) = Z(n) $ ν 2 ( K n ) = Z ( n ) . To this end, we extend the inherent geometric definition of $k$ k -edges for finite sets of points in the plane to topological drawings of $K_{n}$ K n . We also introduce the concept of ${\le }{\le }k$ ≤ ≤ k -edges as a useful generalization of ${\le }k$ ≤ k -edges and extend a powerful theorem that expresses the number of crossings in a rectilinear drawing of $K_{n}$ K n in terms of its number of ${\le }k$ ≤ k -edges to the topological setting. Finally, we give a complete characterization of crossing minimal 2-page book drawings of $K_{n}$ K n and show that, up to equivalence, they are unique for $n$ n even, but that there exist an exponential number of non homeomorphic such drawings for $n$ n odd.  相似文献   

5.
We discuss the Funk function $F(x,y)$ on a Teichmüller space with its Weil–Petersson metric $(\mathcal{T },d)$ introduced in Yamada (Convex bodies in Euclidean and Weil–Petersson geometries, 2011), which was originally studied for an open convex subset in a Euclidean space by Funk [cf. Papadopoulos and Troyanov (Math Proc Cambridge Philos Soc 147:419–437, 2009)]. $F(x,y)$ is an asymmetric distance and invariant by the action of the mapping class group. Unlike the original one, $F(x,y)$ is not always convex in $y$ with $x$ fixed (Corollary 2.11, Theorem 5.1). For each pseudo-Anosov mapping class $g$ and a point $x \in \mathcal{T }$ , there exists $E$ such that for all $n\not = 0$ , $ \log |n| -E \le F(x,g^n.x) \le \log |n|+E$ (Corollary 2.10), while $F(x,g^n.x)$ is bounded if $g$ is a Dehn twist (Proposition 2.13). The translation length is defined by $|g|_F=\inf _{x \in \mathcal{T }}F(x,g.x)$ for a map $g: \mathcal{T }\rightarrow \mathcal{T }$ . If $g$ is a pseudo-Anosov mapping class, there exists $Q$ such that for all $n \not = 0$ , $\log |n| -Q \le |g^n|_F \le \log |n| + Q.$ For sufficiently large $n$ , $|g^n|_F >0$ and the infimum is achieved. If $g$ is a Dehn twist, then $|g^n|_F=0$ for each $n$ (Theorem 2.16). Some geodesics in $(\mathcal{T },d)$ are geodesics in terms of $F$ as well. We find a decomposition of $\mathcal{T }$ by sets, each of which is foliated by those geodesics (Theorem 4.10).  相似文献   

6.
Denote by ${\mathcal{C}\ell_{p,q}}$ the Clifford algebra on the real vector space ${\mathbb{R}^{p,q}}$ . This paper gives a unified tensor product expression of ${\mathcal{C}\ell_{p,q}}$ by using the center of ${\mathcal{C}\ell_{p,q}}$ . The main result states that for nonnegative integers p, q, ${\mathcal{C}\ell_{p,q} \simeq \otimes^{\kappa-\delta}\mathcal{C}_{1,1} \otimes Cen(\mathcal{C}\ell_{p,q}) \otimes^{\delta} \mathcal{C}\ell_{0,2},}$ where ${p + q \equiv \varepsilon}$ mod 2, ${\kappa = ((p + q) - \varepsilon)/2, p - |q - \varepsilon| \equiv i}$ mod 8 and ${\delta = \lfloor i / 4 \rfloor}$ .  相似文献   

7.
Let $P \subseteq \mathbb{R }^d$ P ? R d be a $d$ d -dimensional $n$ n -point set. A Tverberg partition is a partition of $P$ P into $r$ r sets $P_1, \dots , P_r$ P 1 , ? , P r such that the convex hulls $\hbox {conv}(P_1), \dots , \hbox {conv}(P_r)$ conv ( P 1 ) , ? , conv ( P r ) have non-empty intersection. A point in $\bigcap _{i=1}^{r} \hbox {conv}(P_i)$ ? i = 1 r conv ( P i ) is called a Tverberg point of depth $r$ r for $P$ P . A classic result by Tverberg shows that there always exists a Tverberg partition of size $\lceil n/(d+1) \rceil $ ? n / ( d + 1 ) ? , but it is not known how to find such a partition in polynomial time. Therefore, approximate solutions are of interest. We describe a deterministic algorithm that finds a Tverberg partition of size $\lceil n/4(d+1)^3 \rceil $ ? n / 4 ( d + 1 ) 3 ? in time $d^{O(\log d)} n$ d O ( log d ) n . This means that for every fixed dimension we can compute an approximate Tverberg point (and hence also an approximate centerpoint) in linear time. Our algorithm is obtained by combining a novel lifting approach with a recent result by Miller and Sheehy (Comput Geom Theory Appl 43(8):647–654, 2010).  相似文献   

8.
Let $X\subset \mathbb{A }^{2r}$ X ? A 2 r be a real curve embedded into an even-dimensional affine space. We characterise when the $r$ r th secant variety to $X$ X is an irreducible component of the algebraic boundary of the convex hull of the real points $X(\mathbb{R })$ X ( R ) of $X$ X . This fact is then applied to $4$ 4 -dimensional $\mathrm{SO}(2)$ SO ( 2 ) -orbitopes and to the so called Barvinok–Novik orbitopes to study when they are basic closed semi-algebraic sets. In the case of $4$ 4 -dimensional $\mathrm{SO}(2)$ SO ( 2 ) -orbitopes, we find all irreducible components of their algebraic boundary.  相似文献   

9.
Let E be a vector bundle of rank r over an irreducible smooth projective curve X defined over the field ${\overline{{\mathbb F}}_p}$ F ¯ p . For fixed integers ${r_1\, , \ldots\, , r_\nu}$ r 1 , ... , r ν with ${1\, \leq\, r_1\, <\, \cdots\, <\, r_\nu\, <\, r}$ 1 ≤ r 1 < ? < r ν < r , let ${\text{Fl}(E)}$ Fl ( E ) be the corresponding flag bundle over X associated to E. Let ${\xi\, \longrightarrow \, {\rm Fl}(E)}$ ξ ? Fl ( E ) be a line bundle such that for every pair of the form ${(C\, ,\phi)}$ ( C , ? ) , where C is an irreducible smooth projective curve defined over ${\overline{\mathbb F}_p}$ F ¯ p and ${\phi\, :\, C\, \longrightarrow\, {\rm Fl}(E)}$ ? : C ? Fl ( E ) is a nonconstant morphism, the inequality ${{\rm degree}(\phi^* \xi)\, > \, 0}$ degree ( ? ? ξ ) > 0 holds. We prove that the line bundle ${\xi}$ ξ is ample.  相似文献   

10.
Let $G$ denote a closed, connected, self-adjoint, noncompact subgroup of $GL(n,\mathbb R )$ , and let $d_{R}$ and $d_{L}$ denote respectively the right and left invariant Riemannian metrics defined by the canonical inner product on $M(n,\mathbb R ) = T_{I} GL(n,\mathbb R )$ . Let $v$ be a nonzero vector of $\mathbb R ^{n}$ such that the orbit $G(v)$ is unbounded in $\mathbb R ^{n}$ . Then the function $g \rightarrow d_{R}(g, G_{v})$ is unbounded, where $G_{v} = \{g \in G : g(v) = v \}$ , and we obtain algebraically defined upper and lower bounds $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ for the asymptotic behavior of the function $\frac{log|g(v)|}{d_{R}(g, G_{v})}$ as $d_{R}(g, G_{v}) \rightarrow \infty $ . The upper bound $\lambda ^{+}(v)$ is at most 1. The orbit $G(v)$ is closed in $\mathbb R ^{n} \Leftrightarrow \lambda ^{-}(w)$ is positive for some w $\in G(v)$ . If $G_{v}$ is compact, then $g \rightarrow |d_{R}(g,I) - d_{L}(g,I)|$ is uniformly bounded in $G$ , and the exponents $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ are sharp upper and lower asymptotic bounds for the functions $\frac{log|g(v)|}{d_{R}(g,I)}$ and $\frac{log|g(v)|}{d_{L}(g,I)}$ as $d_{R}(g,I) \rightarrow \infty $ or as $d_{L}(g,I) \rightarrow \infty $ . However, we show by example that if $G_{v}$ is noncompact, then there need not exist asymptotic upper and lower bounds for the function $\frac{log|g(v)|}{d_{L}(g, G_{v})}$ as $d_{L}(g, G_{v}) \rightarrow \infty $ . The results apply to representations of noncompact semisimple Lie groups $G$ on finite dimensional real vector spaces. We compute $\lambda ^{+}$ and $\lambda ^{-}$ for the irreducible, real representations of $SL(2,\mathbb R )$ , and we show that if the dimension of the $SL(2,\mathbb R )$ -module $V$ is odd, then $\lambda ^{+} = \lambda ^{-}$ on a nonempty open subset of $V$ . We show that the function $\lambda ^{-}$ is $K$ -invariant, where $K = O(n,\mathbb R ) \cap G$ . We do not know if $\lambda ^{-}$ is $G$ -invariant.  相似文献   

11.
Let $\mathbf{K }:=\left\{ \mathbf{x }: g(\mathbf{x })\le 1\right\} $ K : = x : g ( x ) ≤ 1 be the compact (and not necessarily convex) sub-level set of some homogeneous polynomial $g$ g . Assume that the only knowledge about $\mathbf{K }$ K is the degree of $g$ g as well as the moments of the Lebesgue measure on $\mathbf{K }$ K up to order $2d$ 2 d . Then the vector of coefficients of $g$ g is the solution of a simple linear system whose associated matrix is nonsingular. In other words, the moments up to order $2d$ 2 d of the Lebesgue measure on $\mathbf{K }$ K encode all information on the homogeneous polynomial $g$ g that defines $\mathbf{K }$ K (in fact, only moments of order $d$ d and $2d$ 2 d are needed).  相似文献   

12.
Monogenic (or hyperholomorphic) functions are well known in general Clifford algebras but have been little studied in the particular case ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}$ R 3 → R 3 . We describe for this case the collection of all Appell systems: bases for the finite-dimensional spaces of monogenic homogeneous polynomials which respect the operator ${D = \partial_{0} - \vec{\partial}}$ D = ? 0 ? ? → . We prove that no purely algebraic recursive formula (in a specific sense) exists for these Appell systems, in contrast to the existence of known constructions for ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{4}}$ R 3 → R 4 and ${\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}}$ R 4 → R 4 . However, we give a simple recursive procedure for constructing Appell bases for ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}$ R 3 → R 3 which uses the operation of integration of polynomials.  相似文献   

13.
Let $F$ be a global function field over a finite constant field and $\infty $ a place of $F$ . The ring $A$ of functions regular away from $\infty $ in $F$ is a Dedekind domain. For such $A$ Goss defined a $\zeta $ -function which is a continuous function from $\mathbb{Z }_p$ to the ring of entire power series with coefficients in the completion $F_\infty $ of $F$ at $\infty $ . He asks what one can say about the distribution of the zeros of the entire function at any parameter of $\mathbb{Z }_p$ . In the simplest case $A$ is the polynomial ring in one variable over a finite field. Here the question was settled completely by J. Sheats, after previous work by J. Diaz-Vargas, B. Poonen and D. Wan: for any parameter in $\mathbb{Z }_p$ the zeros of the power series have pairwise different valuations and they lie in  $F_\infty $ . In the present article we completely determine the distribution of zeros for the simplest case different from polynomial rings, namely $A=\mathbb{F }\,\!{}_2[x,y]/(y^2+y+x^3+x+1)$ —this $A$ has class number $1$ , it is the affine coordinate ring of a supersingular elliptic curve and the place $\infty $ is $\mathbb{F }\,\!{}_2$ -rational. The answer is slightly different from the above case of polynomial rings. For arbitrary $A$ such that $\infty $ is a rational place of $F$ , we describe a pattern in the distribution of zeros which we observed in some computational experiments. Finally, we present some precise conjectures on the fields of rationality of these zeroes for one particular hyperelliptic $A$ of genus  $2$ .  相似文献   

14.
The skewfield $\mathcal{K }(\partial )$ of rational pseudodifferential operators over a differential field $\mathcal{K }$ is the skewfield of fractions of the algebra of differential operators $\mathcal{K }[\partial ]$ . In our previous paper, we showed that any $H\in \mathcal{K }(\partial )$ has a minimal fractional decomposition $H=AB^{-1}$ , where $A,B\in \mathcal{K }[\partial ],\,B\ne 0$ , and any common right divisor of $A$ and $B$ is a non-zero element of $\mathcal{K }$ . Moreover, any right fractional decomposition of $H$ is obtained by multiplying $A$ and $B$ on the right by the same non-zero element of $\mathcal{K }[\partial ]$ . In the present paper, we study the ring $M_n(\mathcal{K }(\partial ))$ of $n\times n$ matrices over the skewfield $\mathcal{K }(\partial )$ . We show that similarly, any $H\in M_n(\mathcal{K }(\partial ))$ has a minimal fractional decomposition $H=AB^{-1}$ , where $A,B\in M_n(\mathcal{K }[\partial ]),\,B$ is non-degenerate, and any common right divisor of $A$ and $B$ is an invertible element of the ring $M_n(\mathcal{K }[\partial ])$ . Moreover, any right fractional decomposition of $H$ is obtained by multiplying $A$ and $B$ on the right by the same non-degenerate element of $M_n(\mathcal{K } [\partial ])$ . We give several equivalent definitions of the minimal fractional decomposition. These results are applied to the study of maximal isotropicity property, used in the theory of Dirac structures.  相似文献   

15.
A simple topological graph $T=(V(T), E(T))$ T = ( V ( T ) , E ( T ) ) is a drawing of a graph in the plane where every two edges have at most one common point (an endpoint or a crossing) and no three edges pass through a single crossing. Topological graphs $G$ G and $H$ H are isomorphic if $H$ H can be obtained from $G$ G by a homeomorphism of the sphere, and weakly isomorphic if $G$ G and $H$ H have the same set of pairs of crossing edges. We generalize results of Pach and Tóth and the author’s previous results on counting different drawings of a graph under both notions of isomorphism. We prove that for every graph $G$ G with $n$ n vertices, $m$ m edges and no isolated vertices the number of weak isomorphism classes of simple topological graphs that realize $G$ G is at most $2^{O(n^2\log (m/n))}$ 2 O ( n 2 log ( m / n ) ) , and at most $2^{O(mn^{1/2}\log n)}$ 2 O ( m n 1 / 2 log n ) if $m\le n^{3/2}$ m ≤ n 3 / 2 . As a consequence we obtain a new upper bound $2^{O(n^{3/2}\log n)}$ 2 O ( n 3 / 2 log n ) on the number of intersection graphs of $n$ n pseudosegments. We improve the upper bound on the number of weak isomorphism classes of simple complete topological graphs with $n$ n vertices to $2^{n^2\cdot \alpha (n)^{O(1)}}$ 2 n 2 · α ( n ) O ( 1 ) , using an upper bound on the size of a set of permutations with bounded VC-dimension recently proved by Cibulka and the author. We show that the number of isomorphism classes of simple topological graphs that realize $G$ G is at most $2^{m^2+O(mn)}$ 2 m 2 + O ( m n ) and at least $2^{\Omega (m^2)}$ 2 Ω ( m 2 ) for graphs with $m>(6+\varepsilon )n$ m > ( 6 + ε ) n .  相似文献   

16.
We say that a triangle $T$ T tiles the polygon $\mathcal A $ A if $\mathcal A $ A can be decomposed into finitely many non-overlapping triangles similar to $T$ T . A tiling is called regular if there are two angles of the triangles, say $\alpha $ α and $\beta $ β , such that at each vertex $V$ V of the tiling the number of triangles having $V$ V as a vertex and having angle $\alpha $ α at $V$ V is the same as the number of triangles having angle $\beta $ β at $V$ V . Otherwise the tiling is called irregular. Let $\mathcal P (\delta )$ P ( δ ) be a parallelogram with acute angle $\delta $ δ . In this paper we prove that if the parallelogram $\mathcal P (\delta )$ P ( δ ) is tiled with similar triangles of angles $(\alpha , \beta , \pi /2)$ ( α , β , π / 2 ) , then $(\alpha , \beta )=(\delta , \pi /2-\delta )$ ( α , β ) = ( δ , π / 2 - δ ) or $(\alpha , \beta )=(\delta /2, \pi /2-\delta /2)$ ( α , β ) = ( δ / 2 , π / 2 - δ / 2 ) , and if the tiling is regular, then only the first case can occur.  相似文献   

17.
18.
For $x\in [0,1)$ x ∈ [ 0 , 1 ) , let $x=[a_1(x), a_2(x),\ldots ]$ x = [ a 1 ( x ) , a 2 ( x ) , ... ] be its continued fraction expansion with partial quotients $\{a_n(x), n\ge 1\}$ { a n ( x ) , n ≥ 1 } . Let $\psi : \mathbb{N } \rightarrow \mathbb{N }$ ψ : N → N be a function with $\psi (n)/n\rightarrow \infty $ ψ ( n ) / n → ∞ as $n\rightarrow \infty $ n → ∞ . In this note, the fast Khintchine spectrum, i.e., the Hausdorff dimension of the set $$\begin{aligned} E(\psi ):=\left\{ x\in [0,1): \lim _{n\rightarrow \infty }\frac{1}{\psi (n)}\sum _{j=1}^n\log a_j(x)=1\right\} \end{aligned}$$ E ( ψ ) : = x ∈ [ 0 , 1 ) : lim n → ∞ 1 ψ ( n ) ∑ j = 1 n log a j ( x ) = 1 is completely determined without any extra condition on $\psi $ ψ . This fills a gap of the former work in Fan et al. (Ergod Theor Dyn Syst 29:73–109, 2009).  相似文献   

19.
Let A be an expansive dilation on ${{\mathbb R}^n}$ and w a Muckenhoupt ${\mathcal A_\infty(A)}$ weight. In this paper, for all parameters ${\alpha\in{\mathbb R} }$ and ${p,q\in(0,\infty)}$ , the authors identify the dual spaces of weighted anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A;w)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A;w)}$ with some new weighted Besov-type and Triebel?CLizorkin-type spaces. The corresponding results on anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A; \mu)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A; \mu)}$ associated with ${\rho_A}$ -doubling measure??? are also established. All results are new even for the classical weighted Besov and Triebel?CLizorkin spaces in the isotropic setting. In particular, the authors also obtain the ${\varphi}$ -transform characterization of the dual spaces of the classical weighted Hardy spaces on ${{\mathbb R}^n}$ .  相似文献   

20.
It is shown that every measurable partition $\{A_1,\ldots , A_k\}$ { A 1 , … , A k } of $\mathbb R ^3$ R 3 satisfies 1 $$\begin{aligned} \sum _{i=1}^k\big \Vert \int _{A_i} x\mathrm{{e}}^{-\frac{1}{2}\Vert x\Vert _2^2}\mathrm{{d}}x\big \Vert _2^2\leqslant 9\pi ^2. \end{aligned}$$ ∑ i = 1 k ‖ ∫ A i x e - 1 2 ‖ x ‖ 2 2 d x ‖ 2 2 ? 9 π 2 . Let $\{P_1,P_2,P_3\}$ { P 1 , P 2 , P 3 } be the partition of $\mathbb R ^2$ R 2 into $120^{\circ }$ 120 ° sectors centered at the origin. The bound (1) is sharp, with equality holding if $A_i=P_i\times \mathbb R $ A i = P i × R for $i\in \{1,2,3\}$ i ∈ { 1 , 2 , 3 } and $A_i=\emptyset $ A i = ? for $i\in \{4,\ldots ,k\}$ i ∈ { 4 , … , k } . This settles positively the $3$ 3 -dimensional Propeller Conjecture of Khot and Naor [(Mathematika 55(1-2):129–165, 2009 (FOCS 2008)]. The proof of (1) reduces the problem to a finite set of numerical inequalities which are then verified with full rigor in a computer-assisted fashion. The main consequence (and motivation) of (1) is complexity-theoretic: the unique games hardness threshold of the kernel clustering problem with $4\times 4$ 4 × 4 centered and spherical hypothesis matrix equals $\frac{2\pi }{3}$ 2 π 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号