首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
In the paper, we consider the exact minimax penalty function method used for solving a general nondifferentiable extremum problem with both inequality and equality constraints. We analyze the relationship between an optimal solution in the given constrained extremum problem and a minimizer in its associated penalized optimization problem with the exact minimax penalty function under the assumption of convexity of the functions constituting the considered optimization problem (with the exception of those equality constraint functions for which the associated Lagrange multipliers are negative—these functions should be assumed to be concave). The lower bound of the penalty parameter is given such that, for every value of the penalty parameter above the threshold, the equivalence holds between the set of optimal solutions in the given extremum problem and the set of minimizers in its associated penalized optimization problem with the exact minimax penalty function.  相似文献   

2.
In this paper, the problem of decentralized stability of switched nonlinear large-scale systems with time-varying delays in interconnections is studied. The time delays are assumed to be any continuous functions belonging to a given interval. By constructing a set of new Lyapunov–Krasovskii functionals, which are mainly based on the information of the lower and upper delay bounds, a new delay-dependent sufficient condition for designing switching law of exponential stability is established in terms of linear matrix inequalities (LMIs). The developed method using new inequalities for lower bounding cross terms eliminate the need for overbounding and provide larger values of the admissible delay bound. Numerical examples are given to illustrate the effectiveness of the new theory.  相似文献   

3.
We present a global optimization algorithm, Branch-and-Sandwich, for optimistic bilevel programming problems that satisfy a regularity condition in the inner problem. The functions involved are assumed to be nonconvex and twice continuously differentiable. The proposed approach can be interpreted as the exploration of two solution spaces (corresponding to the inner and the outer problems) using a single branch-and-bound tree. A novel branching scheme is developed such that classical branch-and-bound is applied to both spaces without violating the hierarchy in the decisions and the requirement for (global) optimality in the inner problem. To achieve this, the well-known features of branch-and-bound algorithms are customized appropriately. For instance, two pairs of lower and upper bounds are computed: one for the outer optimal objective value and the other for the inner value function. The proposed bounding problems do not grow in size during the algorithm and are obtained from the corresponding problems at the parent node.  相似文献   

4.
A global optimization method, QBB, for twice-differentiable NLPs (Non-Linear Programming) is developed to operate within a branch-and-bound framework and require the construction of a relaxed convex problem on the basis of the quadratic lower bounding functions for the generic nonconvex structures. Within an exhaustive simplicial division of the constrained region, the rigorous quadratic underestimation function is constructed for the generic nonconvex function structure by virtue of the maximal eigenvalue analysis of the interval Hessian matrix. Each valid lower bound of the NLP problem with the division progress is computed by the convex programming of the relaxed optimization problem obtained by preserving the convex or linear terms, replacing the concave term with linear convex envelope, underestimating the special terms and the generic terms by using their customized tight convex lower bounding functions or the valid quadratic lower bounding functions, respectively. The standard convergence properties of the QBB algorithm for nonconvex global optimization problems are guaranteed. The preliminary computation studies are presented in order to evaluate the algorithmic efficiency of the proposed QBB approach.  相似文献   

5.
A stochastic algorithm is proposed for the global optimization of nonconvex functions subject to linear constraints. Our method follows the trajectory of an appropriately defined Stochastic Differential Equation (SDE). The feasible set is assumed to be comprised of linear equality constraints, and possibly box constraints. Feasibility of the trajectory is achieved by projecting its dynamics onto the set defined by the linear equality constraints. A barrier term is used for the purpose of forcing the trajectory to stay within the box constraints. Using Laplace’s method we give a characterization of a probability measure (Π) that is defined on the set of global minima of the problem. We then study the transition density associated with the projected diffusion process and show that its weak limit is given by Π. Numerical experiments using standard test problems from the literature are reported. Our results suggest that the method is robust and applicable to large-scale problems.  相似文献   

6.
In this paper, we investigate a constrained optimization problem with a quadratic cost functional and two quadratic equality constraints. It is assumed that the cost functional is positive definite and that the constraints are both feasible and regular (but otherwise they are unrestricted quadratic functions). Thus, the existence of a global constrained minimum is assured. We develop a necessary and sufficient condition that completely characterizes the global minimum cost. Such a condition is of essential importance in iterative numerical methods for solving the constrained minimization problem, because it readily distinguishes between local minima and global minima and thus provides a stopping criterion for the computation. The result is similar to one obtained previously by the authors. In the previous result, we gave a characterization of the global minimum of a constrained quadratic minimization problem in which the cost functional was an arbitrary quadratic functional (as opposed to positive-definite here) and the constraints were at least positive-semidefinite quadratic functions (as opposed to essentially unrestricted here).  相似文献   

7.
8.
Global solution of bilevel programs with a nonconvex inner program   总被引:3,自引:1,他引:2  
A bounding algorithm for the global solution of nonlinear bilevel programs involving nonconvex functions in both the inner and outer programs is presented. The algorithm is rigorous and terminates finitely to a point that satisfies ε-optimality in the inner and outer programs. For the lower bounding problem, a relaxed program, containing the constraints of the inner and outer programs augmented by a parametric upper bound to the parametric optimal solution function of the inner program, is solved to global optimality. The optional upper bounding problem is based on probing the solution obtained by the lower bounding procedure. For the case that the inner program satisfies a constraint qualification, an algorithmic heuristic for tighter lower bounds is presented based on the KKT necessary conditions of the inner program. The algorithm is extended to include branching, which is not required for convergence but has potential advantages. Two branching heuristics are described and analyzed. Convergence proofs are provided and numerical results for original test problems and for literature examples are presented.  相似文献   

9.
We study approaches for obtaining convex relaxations of global optimization problems containing multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the problem to contain only bilinear terms and then relaxes each term independently. We show that for a multilinear function having a single product term, this approach yields the convex and concave envelopes if the bounds on all variables are symmetric around zero. We then review and extend some results on conditions when the concave envelope of a multilinear function can be written as a sum of concave envelopes of its individual terms. Finally, for bilinear functions we prove that the difference between the concave upper bounding and convex lower bounding functions obtained from the McCormick relaxation approach is always within a constant of the difference between the concave and convex envelopes. These results, along with numerical examples we provide, give insight into how to construct strong relaxations of multilinear functions.  相似文献   

10.
A Lagrange multiplier rule is presented for a variational problem of Bolza type under hypotheses that allow certain components of the coefficient matrices involved in the functional being minimized to fail to be integrable near an endpoint of the interval on which the relevant functions are defined. The problem is also addressed when all coefficients are of classL 2, but not necessarily bounded. Applications are made to ascertain properties of functions providing equality to certain singular and regular integral inequalities appearing in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号