首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

2.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

3.
One considers the equation $$ \mathrm{div}\left( {{u^{\sigma }}Du} \right)+b(x)Du-{u_t}=f(x)g(u),\quad x\in {{\mathbb{R}}^n},\quad t\in \left( {0,\infty } \right), $$ where $ b:{{\mathbb{R}}^n}\to {{\mathbb{R}}^n} $ and $ f:{{\mathbb{R}}^n}\to [0,\infty ) $ are locally bounded measurable functions, g: (0,∞)??(0,∞) is continuous and nondecreasing, One obtains the conditions ensuring that its positive solutions stabilize to zero as t?→?∞.  相似文献   

4.
We show that if G is an upper semicontinuous decomposition ${\mathbb {R}^n, n \ge 4}$ , into convex sets, then the quotient space ${\mathbb {R}^n/G}$ is a codimension 1 manifold factor. In particular, we show that ${\mathbb {R}^n/G}$ has the disjoint arc-disk property.  相似文献   

5.
Let A be an expansive dilation on ${{\mathbb R}^n}$ and w a Muckenhoupt ${\mathcal A_\infty(A)}$ weight. In this paper, for all parameters ${\alpha\in{\mathbb R} }$ and ${p,q\in(0,\infty)}$ , the authors identify the dual spaces of weighted anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A;w)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A;w)}$ with some new weighted Besov-type and Triebel?CLizorkin-type spaces. The corresponding results on anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A; \mu)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A; \mu)}$ associated with ${\rho_A}$ -doubling measure??? are also established. All results are new even for the classical weighted Besov and Triebel?CLizorkin spaces in the isotropic setting. In particular, the authors also obtain the ${\varphi}$ -transform characterization of the dual spaces of the classical weighted Hardy spaces on ${{\mathbb R}^n}$ .  相似文献   

6.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

7.
Let ${\vartheta}$ be a measure on the polydisc ${\mathbb{D}^n}$ which is the product of n regular Borel probability measures so that ${\vartheta([r,1)^n\times\mathbb{T}^n) >0 }$ for all 0 < r < 1. The Bergman space ${A^2_{\vartheta}}$ consists of all holomorphic functions that are square integrable with respect to ${\vartheta}$ . In one dimension, it is well known that if f is continuous on the closed disc ${\overline{\mathbb{D}}}$ , then the Hankel operator H f is compact on ${A^2_\vartheta}$ . In this paper we show that for n ≥ 2 and f a continuous function on ${{\overline{\mathbb{D}}}^n}$ , H f is compact on ${A^2_\vartheta}$ if and only if there is a decomposition f = h + g, where h belongs to ${A^2_\vartheta}$ and ${\lim_{z\to\partial\mathbb{D}^n}g(z)=0}$ .  相似文献   

8.
A function ${u : X \to \mathbb{R}}$ defined on a partially ordered set is quasi-Leontief if, for all ${x \in X}$ , the upper level set ${\{x\prime \in X : u(x\prime) \geq u(x)\}}$ has a smallest element; such an element is an efficient point of u. An abstract game ${u_{i} : \prod^{n}_{j=1} X_j \to \mathbb{R}, i \in \{1, \ldots , n\}}$ , is a quasi-Leontief game if, for all i and all ${(x_{j})_{j \neq i} \in \prod_{j \neq i} X_{j}, u_{i}((x_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ is quasi-Leontief; a Nash equilibrium x* of an abstract game ${u_{i} :\prod^{n}_{j=1} X_{j} \to \mathbb{R}}$ is efficient if, for all ${i, x^{*}_{i}}$ is an efficient point of the partial function ${u_{i}((x^{*}_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ . We establish the existence of efficient Nash equilibria when the strategy spaces X i are topological semilattices which are Peano continua and Lawson semilattices.  相似文献   

9.
We consider the Markov chain ${\{X_n^x\}_{n=0}^\infty}$ on ${\mathbb{R}^d}$ defined by the stochastic recursion ${X_{n}^{x}= \psi_{\theta_{n}} (X_{n-1}^{x})}$ , starting at ${x\in\mathbb{R}^d}$ , where ?? 1, ?? 2, . . . are i.i.d. random variables taking their values in a metric space ${(\Theta, \mathfrak{r})}$ , and ${\psi_{\theta_{n}} :\mathbb{R}^d\mapsto\mathbb{R}^d}$ are Lipschitz maps. Assume that the Markov chain has a unique stationary measure ??. Under appropriate assumptions on ${\psi_{\theta_n}}$ , we will show that the measure ?? has a heavy tail with the exponent ???>?0 i.e. ${\nu(\{x\in\mathbb{R}^d: |x| > t\})\asymp t^{-\alpha}}$ . Using this result we show that properly normalized Birkhoff sums ${S_n^x=\sum_{k=1}^n X_k^x}$ , converge in law to an ??-stable law for ${\alpha\in(0, 2]}$ .  相似文献   

10.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

11.
In this paper, using Leray–Schauder degree arguments, critical point theory for lower semicontinuous functionals and the method of lower and upper solutions, we give existence results for periodic problems involving the relativistic operator ${u \mapsto \left(\frac{u^\prime}{\sqrt{1-u^\prime 2}}\right)^\prime+r(t)u}$ with ${\int_0^Tr dt\neq 0}$ . In particular we show that in this case we have non-resonance, that is periodic problem $$\left(\frac{u^\prime}{\sqrt{1-u^\prime 2}}\right)^\prime+r(t)u=e(t),\quad u(0)-u(T)=0=u^\prime(0)-u^\prime(T),$$ has at least one solution for any continuous function ${e : [0, T] \to \mathbb {R}}$ . Then, we consider Brillouin and Mathieu-Duffing type equations for which ${r(t) \equiv b_1 + b_2 {\rm cos} t {\rm and} b_1, b_2 \in \mathbb{R}}$ .  相似文献   

12.
We classify hypersurfaces of rank two of Euclidean space ${\mathbb{R}^{n+1}}$ that admit genuine isometric deformations in ${\mathbb{R}^{n+2}}$ . That an isometric immersion ${\hat{f}\colon M^n \to \mathbb{R}^{n+2}}$ is a genuine isometric deformation of a hypersurface ${f\colon M^n\to\mathbb{R}^{n+1}}$ means that ${\hat f}$ is nowhere a composition ${\hat f=\hat F\circ f}$ , where ${\hat{F} \colon V\subset \mathbb{R}^{n+1} \to\mathbb{R}^{n+2}}$ is an isometric immersion of an open subset V containing the hypersurface.  相似文献   

13.
Tukia and Väisälä showed that every quasi-conformal map of ${\mathbb{R}^n}$ extends to a quasi-conformal self-map of ${\mathbb{R}^{n+1}}$ . The restriction of the extended map to the upper half-space ${\mathbb{R}^n \times \mathbb{R}_+}$ is, in fact, bi-Lipschitz with respect to the hyperbolic metric. More generally, every simply connected homogeneous negatively curved manifold decomposes as ${M = N \rtimes \mathbb{R}_+}$ where N is a nilpotent group with a metric on which ${\mathbb{R}_+}$ acts by dilations. We show that under some assumptions on N, every quasi-symmetry of N extends to a bi-Lipschitz map of M. The result applies to a wide class of manifolds M including non-compact rank one symmetric spaces and certain manifolds that do not admit co-compact group actions. Although M must be Gromov hyperbolic, its curvature need not be strictly negative.  相似文献   

14.
Given n, N ≥ 1 we construct a set of points ${\lambda_1,{\ldots},\lambda_{N^n}\in{\mathbb D}^n}$ such that for each rational inner function f on ${{\mathbb D}^n}$ of degree less than N the Pick problem on ${{\mathbb D}^n}$ with data ${\lambda_1,{\ldots},\lambda_{N^n}}$ and ${f(\lambda_1),{\ldots},f(\lambda_{N^n})}$ has a unique solution. In particular, we construct a 1-dimensional inner variety V and show that the points ${\lambda_1,{\ldots},\lambda_{N^n}}$ may be chosen almost arbitrarily in ${V\cap{\mathbb D}^n}$ . Our results state that f is uniquely determined in the Schur class of ${{\mathbb D}^n}$ by its values on ${\lambda_1,{\ldots},\lambda_{N^n}}$ .  相似文献   

15.
We consider the groups ${\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)$ , ${\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)$ , and ${\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)$ of smooth diffeomorphisms on $\mathbb{R }^n$ which differ from the identity by a function which is in either $\mathcal{B }$ (bounded in all derivatives), $H^\infty = \bigcap _{k\ge 0}H^k$ , or $\mathcal{S }$ (rapidly decreasing). We show that all these groups are smooth regular Lie groups.  相似文献   

16.
We consider regular oblique derivative problem in cylinder Q T ?=????× (0, T), ${\Omega\subset {\mathbb R}^n}$ for uniformly parabolic operator ${{{\mathfrak P}}=D_t- \sum_{i,j=1}^n a^{ij}(x)D_{ij}}$ with VMO principal coefficients. Its unique strong solvability is proved in Manuscr. Math. 203?C220 (2000), when ${{{\mathfrak P}}u\in L^p(Q_T)}$ , ${p\in(1,\infty)}$ . Our aim is to show that the solution belongs to the generalized Sobolev?CMorrey space ${W^{2,1}_{p,\omega}(Q_T)}$ , when ${{{\mathfrak P}}u\in L^{p,\omega} (Q_T)}$ , ${p\in (1, \infty)}$ , ${\omega(x,r):\,{\mathbb R}^{n+1}_+\to {\mathbb R}_+}$ . For this goal an a priori estimate is obtained relying on explicit representation formula for the solution. Analogous result holds also for the Cauchy?CDirichlet problem.  相似文献   

17.
In this paper we investigate the classification of mappings up to ${\mathcal{K}}$ -equivalence. We give several results of this type. We study semialgebraic deformations up to semialgebraic C 0 ${\mathcal{K}}$ -equivalence and bi-Lipschitz ${\mathcal{K}}$ -equivalence. We give an algebraic criterion for bi-Lipschitz ${\mathcal{K}}$ -triviality in terms of semi-integral closure (Theorem 3.5). We also give a new proof of a result of Nishimura: we show that two germs of smooth mappings ${f, g: \mathbb{R}^n \to \mathbb{R}^n}$ , finitely determined with respect to ${\mathcal{K}}$ -equivalence are C 0- ${\mathcal{K}}$ -equivalent if and only if they have the same degree in absolute value.  相似文献   

18.
In this paper we study the Wigner transform for a class of smooth Bloch wave functions on the flat torus ${\mathbb{T}^n = \mathbb{R}^n /2\pi \mathbb{Z}^n}$ : $$\psi_{\hbar,P} (x) = a (\hbar,P,x) {\rm e}^{ \frac{i}{\hbar} ( P\cdot x + \hat{v}(\hbar,P,x) )}.$$ On requiring that ${P \in \mathbb{Z}^n}$ and ${\hbar = 1/N}$ with ${N \in \mathbb{N}}$ , we select amplitudes and phase functions through a variational approach in the quantum states space based on a semiclassical version of the classical effective Hamiltonian ${{\bar H}(P)}$ which is the central object of the weak KAM theory. Our main result is that the semiclassical limit of the Wigner transform of ${\psi_{\hbar,P}}$ admits subsequences converging in the weak* sense to Mather probability measures on the phase space. These measures are invariant for the classical dynamics and Action minimizing.  相似文献   

19.
We consider the following perturbed version of quasilinear Schrödinger equation $$\begin{array}{lll}-\varepsilon^2\Delta u +V(x)u-\varepsilon^2\Delta (u^2)u=h(x,u)u+K(x)|u|^{22^*-2}u\end{array}$$ in ${\mathbb{R}^N}$ , where N ≥ 3, 22* = 4N/(N ? 2), V(x) is a nonnegative potential, and K(x) is a bounded positive function. Using minimax methods, we show that this equation has at least one positive solution provided that ${\varepsilon \leq \mathcal{E}}$ ; for any ${m\in\mathbb{N}}$ , it has m pairs of solutions if ${\varepsilon \leq \mathcal{E}_m}$ , where ${\mathcal{E}}$ and ${\mathcal{E}_m}$ are sufficiently small positive numbers. Moreover, these solutions ${u_\varepsilon \to 0}$ in ${H^1(\mathbb{R}^N)}$ as ${\varepsilon \to 0}$ .  相似文献   

20.
Let $\mathbb{K }$ be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial $F$ of degree three in $\mathbb{K }[x_{0},x_1,x_{2},x_{3}]$ and a zero ${\mathbf{a }}$ of $F$ in $\mathbb{P }^{3}_{\mathbb{K }}$ and ensures a linear Pfaffian representation of $\text{ V}(F)$ with entries in $\mathbb{K }[x_{0},x_{1},x_{2},x_{3}]$ , under mild assumptions on $F$ and ${\mathbf{a }}$ . We use this result to give an explicit construction of (and to prove the existence of) a linear Pfaffian representation of $\text{ V}(F)$ , with entries in $\mathbb{K }^{\prime }[x_{0},x_{1},x_{2},x_{3}]$ , being $\mathbb{K }^{\prime }$ an algebraic extension of $\mathbb{K }$ of degree at most six. An explicit example of such a construction is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号