首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper we study the solvability of a class of fully-coupled forward–backward stochastic partial differential equations (FBSPDEs). These FBSPDEs cannot be put into the framework of stochastic evolution equations in general, and the usual decoupling methods for the Markovian forward–backward SDEs are difficult to apply. We prove the well-posedness of the FBSPDEs, under various conditions on the coefficients, by using either the method of contraction mapping or the method of continuation. These conditions, especially in the higher dimensional case, are novel in the literature.  相似文献   

2.
Lithuanian Mathematical Journal - In this paper, we prove an existence and uniqueness theorem and a comparison theorem for a class of anticipated mean-field backward stochastic differential...  相似文献   

3.
This paper establishes a limit theorem for solutions of backward stochastic differential equations (BSDEs). By this limit theorem, this paper proves that, under the standard assumption g(t,y,0) = 0, the generator g of a BSDE can be uniquely determined by the corresponding g-expectationεg;this paper also proves that if a filtration consistent expectation S can be represented as a g-expectationεg, then the corresponding generator g must be unique.  相似文献   

4.
In this article, we study a type of coupled reflected forward–backward stochastic differential equations (reflected FBSDEs, for short) with continuous coefficients, including the existence and the uniqueness of the solution of our reflected FBSDEs as well as the comparison theorem. We prove that the solution of our reflected FBSDEs gives a probabilistic interpretation for the viscosity solution of an obstacle problem for a quasilinear parabolic partial differential equation.  相似文献   

5.
In this work, we prove that there exists at least one solution for the reflected forward–backward stochastic differential equations satisfying the obstacle constraint with continuous monotone coefficients. The distinct character of our result is that the coefficient of the forward SDEs contains the solution variable of the reflected BSDEs.  相似文献   

6.
In this paper, we study the existence, uniqueness and the probabilistic representation of the weak solutions of quasi-linear parabolic and elliptic partial differential equations (PDEs) in the Sobolev space Hρ1(Rd). For this, we study first the solutions of forward–backward stochastic differential equations (FBSDEs) with smooth coefficients, regularity of solutions and their connection with classical solutions of quasi-linear parabolic PDEs. Then using the approximation procedure, we establish their convergence in the Sobolev space to the solutions of the FBSDES in the space Lρ2(Rd;Rd)?Lρ2(Rd;Rk)?Lρ2(Rd;Rk×d). This gives a connection with the weak solutions of quasi-linear parabolic PDEs. Finally, we study the unique weak solutions of quasi-linear elliptic PDEs using the solutions of the FBSDEs on infinite horizon.  相似文献   

7.
We prove the existence and uniqueness of a solution for reflected backward doubly stochastic differential equations (RBDSDEs) driven by Teugels martingales associated with a Lévy process, in which the obstacle process is right continuous with left limits (càdlàg), via Snell envelope and the fixed point theorem.  相似文献   

8.
We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of non-linear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the “geometric form” of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations (BSDEs) and (ii) pricing of European and American derivatives via BSDEs. Regarding (i), we extend previous results on BSDEs in a Lévy setting and the connection to semilinear integro-partial differential equations.  相似文献   

9.
This paper investigates a class of multi-dimensional stochastic differential equations with one reflecting lower barrier (RBSDEs in short), where the random obstacle is described as an Itô diffusion type of stochastic differential equation. The existence and uniqueness results for adapted solutions to such RBSDEs are established based on a penalization scheme and some higher moment estimates for solutions to penalized BSDEs under the Lipschitz condition and a higher moment condition on the coefficients. Finally, two examples are given to illustrate our theory and their applications.  相似文献   

10.
We deal with a class of fully coupled forward–backward stochastic differential equations (FBSDEs), driven by Teugels martingales associated with a general Lévy process. Under some assumptions on the derivatives of the coefficients, we prove the existence and uniqueness of a global solution on an arbitrarily large time interval. Moreover, we establish stability and comparison theorems for the solutions of such equations. Note that the present work extends known results proved for FBSDEs driven by a Brownian motion, by using martingale techniques related to jump processes, to overcome the lack of continuity.  相似文献   

11.
We consider a system of forward–backward stochastic differential equations (FBSDEs) with monotone functionals. We show that such a system is well-posed by the method of continuation similarly to Peng and Wu (1999) for classical FBSDEs. As applications, we prove the well-posedness result for a mean field FBSDE with conditional law and show the existence of a decoupling function. Lastly, we show that mean field games with common noise are uniquely solvable under a linear-convex setting and weak-monotone cost functions and prove that the optimal control is in a feedback form depending only on the current state and conditional law.  相似文献   

12.
In this paper we study stochastic optimal control problems with jumps with the help of the theory of Backward Stochastic Differential Equations (BSDEs) with jumps. We generalize the results of Peng [S. Peng, BSDE and stochastic optimizations, in: J. Yan, S. Peng, S. Fang, L. Wu, Topics in Stochastic Analysis, Science Press, Beijing, 1997 (Chapter 2) (in Chinese)] by considering cost functionals defined by controlled BSDEs with jumps. The application of BSDE methods, in particular, the use of the notion of stochastic backward semigroups introduced by Peng in the above-mentioned work allows a straightforward proof of a dynamic programming principle for value functions associated with stochastic optimal control problems with jumps. We prove that the value functions are the viscosity solutions of the associated generalized Hamilton–Jacobi–Bellman equations with integral-differential operators. For this proof, we adapt Peng’s BSDE approach, given in the above-mentioned reference, developed in the framework of stochastic control problems driven by Brownian motion to that of stochastic control problems driven by Brownian motion and Poisson random measure.  相似文献   

13.
In this note, we study the doubly reflected backward stochastic differential equations driven by Teugels martingales associated with a Lévy process (DRBSDELs for short). In our framework, the reflecting barriers are allowed to have general jumps. Under the Mokobodski condition, by means of the Snell envelope theory as well as the fixed point theory, we show the existence and uniqueness of the solution of the DRBSDELs. Some known results are generalized.  相似文献   

14.

The aim of this paper is to study backward stochastic differential equations (BSDE) driven by Azéma's martingale and the associated deterministic functional equations. More precisely, we introduce BSDE's vs. Azéma's martingale in a general frame, then we prove that the existence of a solution to a Markovian BSDE implies the existence of a solution to a deterministic functional equation of a new type. Uniqueness for the functional equation is proved in a particular case. Then we discuss BSDE's vs. an asymmetric martingale: half Brownian motion/half Azéma's martingale, which leads to an asymmetric deterministic functional equation.  相似文献   

15.
A new explicit stochastic Runge–Kutta scheme of weak order 2 is proposed for non-commutative stochastic differential equations (SDEs), which is derivative-free and which attains order 4 for ordinary differential equations. The scheme is directly applicable to Stratonovich SDEs and uses 2m-12m-1 random variables for one step in the m-dimensional Wiener process case. It is compared with other derivative-free and weak second-order schemes in numerical experiments.  相似文献   

16.
17.

In this paper, we present a framework to construct general stochastic Runge–Kutta Lawson schemes. We prove that the schemes inherit the consistency and convergence properties of the underlying Runge–Kutta scheme, and confirm this in some numerical experiments. We also investigate the stability properties of the methods and show for some examples, that the new schemes have improved stability properties compared to the underlying schemes.

  相似文献   

18.
Summary Solutions of systems of stochastic differential equations are shown to be stable in p under p perturbations of semimartingale differentials. Analogous results are obtained inp p when the solutions are not semimartingales but are only cadlag, adapted processes. Also, the solutions are shown to be stable under almost sure perturbations. These results are contrasted with the lack of stability under non- p perturbations, a result originally obtained by Wong and Zakai.This research was supported in part by NSF Grant No. MCS77-00095  相似文献   

19.
We develop a theory of second order diffusion processes and associated stochastic differential equations of second order. We show that equations of evolution of the density, mean velocity and momentum flux are a family of first order conservation laws similar to those of continuum mechanics. We verify that the theory is satisfied for a large class of reciprocal Gaussian processes  相似文献   

20.
In this work, we generalize the current theory of strong convergence rates for the backward Euler–Maruyama scheme for highly non-linear stochastic differential equations, which appear in both mathematical finance and bio-mathematics. More precisely, we show that under a dissipative condition on the drift coefficient and super-linear growth condition on the diffusion coefficient the BEM scheme converges with strong order of a half. This type of convergence gives theoretical foundations for efficient variance reduction techniques for Monte Carlo simulations. We support our theoretical results with relevant examples, such as stochastic population models and stochastic volatility models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号