首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One presentation of the alternating groupA n hasn?2 generatorss 1,…,sn?2 and relationss 1 3 =s i 2 =(s1?1si)3=(sjsk)2=1, wherei>1 and |j?k|>1. Against this backdrop, a presentation of the alternating semigroupA n c )A n is introduced: It hasn?1 generatorss 1,…,S n?2,e, theA n-relations (above), and relationse 2=e, (es 1)4, (es j)2=(es j)4,es i=s i s 1 -1 es 1, wherej>1 andi≥1.  相似文献   

2.
On the interval [t 0, ∞), we consider the following group pursuit problem with one evader: 1 $$ z_i^{(l)} + a_1 (t)z_i^{(l - 1)} + a_2 (t)z_i^{(l - 2)} + \cdots + a_l (t)z_i = u_i - v, u_i ,v \in V, z_i^{(q)} (t_0 ) = z_i^q , $$ where z i , u i , vR v , (v ≥ 2), V is a strictly convex compact set in R v , the functions a 1(t), a 2(t), …, a l (t) are continuous, i = 1, 2, …, n and q = 0, 1, …, l ? 1. Let ? q (t, s) be the solution of the Cauchy problem $$ \begin{gathered} \omega ^{(l)} + a_1 (t)\omega ^{(l - 1)} + a_2 (t)\omega ^{(l - 2)} + \cdots + a_l (t)\omega = 0, \omega ^{(q)} (s) = 1, \hfill \\ \omega ^{(r)} (s) = 0, r = 0, \ldots q - 1,q + 1, \ldots ,l - 1, \hfill \\ \end{gathered} $$ and let $$ \xi _\iota (t) = \varphi _0 (t,t_0 )Z_i^0 + \varphi _1 (t,t_0 )Z_i^1 + \cdots + \varphi _{l - 1} (t,t_0 )Z_i^{l - 1} . $$ We prove that if there exist continuous functions α i (t) and ξ i 1 (t) such that the ξ i 1 (t) are Bohr almost periodic on [t 0, ∞), α i (t) > 0 for all tt 0, lim t→∞(ξ i 1 (t) ? α i (t)ξ i (t)) = 0, lim t→∞(min i α i (t) ∝ t0 t |? l?1(t, s)| ds) = ∞, and there exist points h i 0 H i 1 = {ξ i 1 (t), t ∈ [0, ∞)} such that 0 ∈ Int co{h i 0 }, then the pursuit problem with evader discrimination is solvable.  相似文献   

3.
Given a measurable space (T, F), a set X, and a map ?: TX, the σ-algebras N Ф = ??∈Φ N ?, and M Φ = ??∈Φ N ?, where G ?(t) = (t, ?(t)) and Φ ? X T , are considered. These σ-algebras are used to characterize the (F, B, ?)-measurability of the compositions g? and f о G ?, where g: XY, f: T × XY, and (Y, ?) is a measurable space. Their elements are described without using the operations ? ?1 and G ? ?1 .  相似文献   

4.
Consider an arbitrary ε > 0 and a sufficiently large prime p > 2. It is proved that, for any integer a, there exist pairwise distinct integers x 1, x 2, ..., x N , where N = 8([1/ε + 1/2] + 1)2 such that 1 ≤ x i p ε, i = 1, ..., N, and $$a \equiv x_1^{ - 1} + \cdots + x_N^{ - 1} (\bmod p)$$ , where x i ?1 is the least positive integer satisfying x i ?1 x i ≡ 1 (modp). This improves a result of Sparlinski.  相似文献   

5.
We study the well-posedness of the second order degenerate integro-differential equations(P2):(Mu)(t)+α(Mu)(t) = Au(t)+ft-∞ a(ts)Au(s)ds + f(t),0t2π,with periodic boundary conditions M u(0)=Mu(2π),(Mu)(0) =(M u)(2π),in periodic Lebesgue-Bochner spaces Lp(T,X),periodic Besov spaces B s p,q(T,X) and periodic Triebel-Lizorkin spaces F s p,q(T,X),where A and M are closed linear operators on a Banach space X satisfying D(A) D(M),a∈L1(R+) and α is a scalar number.Using known operatorvalued Fourier multiplier theorems,we completely characterize the well-posedness of(P2) in the above three function spaces.  相似文献   

6.
The article is devoted to the asymptotic properties of the vector fields $\tilde X_i^g $ , i = 1, …, N, θ g -connected with C 1-smooth basis vector fields {X i } i=1,…,N satisfying condition (+ deg). We prove a theorem of Gromov on the homogeneous nilpotent approximation for vector fields of classC 1. Nontrivial examples are constructed of quasimetrics induced by vector fields {X i } i=1, …, N .  相似文献   

7.
For a finite commutative ring R and a positive integer k ? 2, we construct an iteration digraph G(R, k) whose vertex set is R and for which there is a directed edge from aR to bR if b = a k . Let R = R 1 ⊕ … ⊕ R s , where s > 1 and R i is a finite commutative local ring for i ∈ {1, …, s}. Let N be a subset of {R 1, …, R s } (it is possible that N is the empty set \(\not 0\) ). We define the fundamental constituents G N * (R, k) of G(R, k) induced by the vertices which are of the form {(a 1, …, a s ) ∈ R: a i D(R i ) if R i N, otherwise a i ∈ U(R i ), i = 1, …, s}, where U(R) denotes the unit group of R and D(R) denotes the zero-divisor set of R. We investigate the structure of G* N (R, k) and state some conditions for the trees attached to cycle vertices in distinct fundamental constituents to be isomorphic.  相似文献   

8.
The Dirichlet problem on a closed interval for a parabolic convection-diffusion equation is considered. The higher order derivative is multiplied by a parameter ? taking arbitrary values in the semi-open interval (0, 1]. For the boundary value problem, a finite difference scheme on a posteriori adapted grids is constructed. The classical approximations of the equation on uniform grids in the main domain are used; in some subdomains, these grids are subjected to refinement to improve the grid solution. The subdomains in which the grid should be refined are determined using the difference of the grid solutions of intermediate problems solved on embedded grids. Special schemes on a posteriori piecewise uniform grids are constructed that make it possible to obtain approximate solutions that converge almost ?-uniformly, i.e., with an error that weakly depends on the parameter ?: |u(x, t) ? z(x, t)| ≤ M[N 1 ?1 ln2 N 1 + N 0 ?1 lnN 0 + ??1 N 1 ?K ln K?1 N 1], (x, t) ε ? h , where N 1 + 1 and N 0 + 1 are the numbers of grid points in x and t, respectively; K is the number of refinement iterations (with respect to x) in the adapted grid; and M = M(K). Outside the σ-neighborhood of the outflow part of the boundary (in a neighborhood of the boundary layer), the scheme converges ?-uniformly at a rate O(N 1 ?1 ln2 N 1 + N 0 ?1 lnN 0), where σ ≤ MN 1 ?K + 1 ln K?1 N 1 for K ≥ 2.  相似文献   

9.
Generalizing previous work [2], we study complex polynomials {π k },π k (z)=z k +?, orthogonal with respect to a complex-valued inner product (f,g)=∫ 0 π f(e iθ)g(e iθ)w(e iθ)dθ. Under suitable assumptions on the “weight function”w, we show that these polynomials exist whenever Re ∫ 0 π w(e iθ)dθ≠0, and we express them in terms of the real polynomials orthogonal with respect to the weight functionw(x). We also obtain the basic three-term recurrence relation. A detailed study is made of the polynomials {π k } in the case of the Jacobi weight functionw(z)=(1?z)α(1+z)β, α>?1, and its special case \(\alpha = \beta = \lambda - \tfrac{1}{2}\) (Gegenbauer weight). We show, in particular, that for Gegenbauer weights the zeros ofπ n are all simple and, ifn≥2, contained in the interior of the upper unit half disc. We strongly suspect that the same holds true for arbitrary Jacobi weights. Finally, for the Gegenbauer weight, we obtain a linear second-order differential equation forπ n (z). It has regular singular points atz=1, ?1, ∞ (like Gegenbauer's equation) and an additional regular singular point on the negative imaginary axis, which depends onn.  相似文献   

10.
In this paper, we consider the following two-point fractional boundary value problem. We provide sufficient conditions for the existence of multiple positive solutions for the following boundary value problems that the nonlinear terms contain i-order derivative where n?1<αn is a real number, n is natural number and n≥2, α?i>1, iN and 0≤in?1. ${}^{c}D_{0^{+}}^{\alpha}$ is the standard Caputo derivative. f(t,x 0,x 1,…,x i ) may be singular at t=0.  相似文献   

11.
The Dirichlet problem for a singularly perturbed ordinary differential convection-diffusion equation with a perturbation parameter ? (that takes arbitrary values from the half-open interval (0, 1]) is considered. For this problem, an approach to the construction of a numerical method based on a standard difference scheme on uniform meshes is developed in the case when the data of the grid problem include perturbations and additional perturbations are introduced in the course of the computations on a computer. In the absence of perturbations, the standard difference scheme converges at an \(\mathcal{O}\) st ) rate, where δ st = (? + N ?1)?1 N ?1 and N + 1 is the number of grid nodes; the scheme is not ?-uniformly well conditioned or stable to perturbations of the data. Even if the convergence of the standard scheme is theoretically proved, the actual accuracy of the computed solution in the presence of perturbations degrades with decreasing ? down to its complete loss for small ? (namely, for ? = \(\mathcal{O}\) ?2max i,j a i j | + δ?1 max i, j b i j |), where δ = δ st and δa i j , δb i j are the perturbations in the coefficients multiplying the second and first derivatives). For the boundary value problem, we construct a computer difference scheme, i.e., a computing system that consists of a standard scheme on a uniform mesh in the presence of controlled perturbations in the grid problem data and a hypothetical computer with controlled computer perturbations. The conditions on admissible perturbations in the grid problem data and on admissible computer perturbations are obtained under which the computer difference scheme converges in the maximum norm for ? ∈ (0, 1] at the same rate as the standard scheme in the absence of perturbations.  相似文献   

12.
An integral representation is obtained for the exponential product of stochastic semigroups $$X_s^t \otimes Z_s^t = X_s^t + \mathop \smallint \limits_{s< u< t} X_u^t dV_u X_s^u + \mathop {\smallint \smallint }\limits_{s< u_1< u_2< t} X_{u_2 }^t dV_{u_2 } X_{u_1 }^{u_2 } dV_{u_1 } X_s^{u_1 } + \cdots ,$$ whereV t is the generating process of the semigroupZ s t and the integrals are understood in the sense of mean-square limits of the Riemann-Stieltjes sums. This representation is different from the traditional representation $$X_s^t \otimes Z_s^t = E + \mathop \smallint \limits_{s< u< t} dW_u + \mathop {\smallint \smallint }\limits_{s< u_1< u_2< t} dW_{u_2 } dW_{u_1 } + \cdots ,$$ in which the integration extends over the processW t=Yt+Vt that is the generating process of the exponential productX s t ?Z s t andY t is the generator of the semigroupX s t .  相似文献   

13.
LetH be a subgroup of a groupG. A normal subgroupN H ofH is said to be inheritably normal if there is a normal subgroup N G of G such that N H = N G H. It is proved in the paper that a subgroup $N_{G_i }$ of a factor G i of the n-periodic product Π iI n G i with nontrivial factors G i is an inheritably normal subgroup if and only if $N_{G_i }$ contains the subgroup G i n . It is also proved that for odd n ≥ 665 every nontrivial normal subgroup in a given n-periodic product G = Π iI n G i contains the subgroup G n . It follows that almost all n-periodic products G = G 1 * n G 2 are Hopfian, i.e., they are not isomorphic to any of their proper quotient groups. This allows one to construct nonsimple and not residually finite Hopfian groups of bounded exponents.  相似文献   

14.
Let E be a real uniformly convex and smooth Banach space with P as a sunny nonexpansive retraction, K be a nonempty closed convex subset of E. Let {S i } i=1 N , {T i } i=1 N :KK be two finite families of weakly inward and asymptotically nonexpansive mappings with respect to P. It is proved that the composite implicit iteration process converges weakly and strongly to a common fixed point of {S i } i=1 N , {T i } i=1 N under certain conditions. The results of this paper improve and extend some well known corresponding results.  相似文献   

15.
Suppose that a continuous 2π-periodic function f on the real axis ? changes its monotonicity at different ordered fixed points y i ∈ [?π,π), i = 1, …, 2s, s ∈ ?. In other words, there is a set Y: = {y i } i∈? of points y i = y i+2s + 2π on ? such that f is nondecreasing on [y i ,y i?1] if i is odd and not increasing if i is even. For each nN(Y), we construct a trigonometric polynomial P n of order ≤ n changing its monotonicity at the same points y i Y as f and such that $$ \parallel f - P_n \parallel \leqslant c(s) \omega _2 \left( {f,\frac{\pi } {n}} \right), $$ where N(Y) is a constant depending only on Y, c(s) is a constant depending only on s, ω2(f,·) is the modulus of continuity of second order of the function f, and ∥ · ∥ is the max-norm.  相似文献   

16.
Let R be a commutative Noetherian ring with identity and I an ideal of R. It is shown that, if M is a non-zero minimax R-module such that dim Supp H I i (M) ? 1 for all i, then the R-module H I i (M) is I-cominimax for all i. In fact, H I i (M) is I-cofinite for all i ? 1. Also, we prove that for a weakly Laskerian R-module M, if R is local and t is a non-negative integer such that dim Supp H I i (M) ? 2 for all i < t, then Ext R j (R/I,H I i (M)) and Hom R (R/I,H I t (M)) are weakly Laskerian for all i < t and all j ? 0. As a consequence, the set of associated primes of H I i (M) is finite for all i ? 0, whenever dim R/I ? 2 and M is weakly Laskerian.  相似文献   

17.
LetX 1,...,X n ,Y 1,...,Y n be i.i.d. with the law μ on the cube [0, 1] d ,d?3. LetL n (μ)=infπΣ i=1 n ||X i ?Y π(i)|| denote the optimal bipartite matching of theX andY points, where π ranges over all permutations of the integers 1, 2,...,n, and where ‖·‖ is a norm on ? d . If μ is Lebesgue measure it is shown that $$\mathop {\lim }\limits_{n \to \infty } L_n (\mu )/n^{(d - 1)/d} = \alpha {\text{a}}{\text{.s}}{\text{.}}$$ where α is a finite constant depending on ‖ ‖ andd only. More generally, for arbitrary μ it is shown that $$\mathop {\lim }\limits_{n \to \infty } L_n (\mu )/n^{(d - 1)/d} = \alpha \int {(f{\text{(}}x{\text{)}})^{(d - 1)/d} dxa.s.} $$ wheref is the density of the absolutely continuous part of μ. We also find the rate of convergence.  相似文献   

18.
In this paper, we consider the multipoint boundary value problem for one-dimensional p-Laplacian $$(\phi_{p}(u'))'+f(t,u,u')=0,\quad t\in [0,1],$$ subject to the boundary value conditions: $$u'(0)=\sum_{i=1}^{n-2}\alpha_{i}u'(\xi_{i}),\qquad u(1)=\sum_{i=1}^{n-2}\beta_{i}u(\xi_{i}),$$ where φ p (s)=|s| p?2?s,p>1;ξ i ∈(0,1) with 0<ξ 1<ξ 2<???<ξ n?2<1 and α i ,β i satisfy α i ,β i ∈[0,∞),0≤∑ i=1 n?2 α i <1 and 0≤∑ i=1 n?2 β i <1. Using a fixed point theorem for operators in a cone, we provide sufficient conditions for the existence of multiple positive solutions to the above boundary value problem.  相似文献   

19.
A method for evaluating the Riemann-Mellin integral $$ f(t) = \frac{1} {{2\pi i}}\int\limits_{c - i\infty }^{c + i\infty } {e^{zt} F(z)dz,c > 0,} $$ which determines the inverse Laplace transform, is considered; the method consists in reducing the integral to the form I = ∝ ?∞ g(u) by means of a suitable deformation of the contour of integration and applying the trapezoidal quadrature formulas with an infinite number of nodes (I h = hΣ k=?∞ g(kh)) or with a finite number 2N + 1 of nodes (I h, N = hΣ k = ?N N g(kh)). For parabolic and hyperbolic contours of integration, procedures for choosing the step size h in numerical integration and the summation limits ±N for truncating the infinite sum in the trapezoidal formula, which depend on the arrangement of the singular points of the image, are suggested. Errors are estimated, and their asymptotic behavior with increasing N is described.  相似文献   

20.
The subdivision graph S(Σ) of a connected graph Σ is constructed by adding a vertex in the middle of each edge. In a previous paper written with Cheryl E. Praeger, we characterised the graphs Σ such that S(Σ) is locally (G, s)-distance transitive for s ≤ 2 diam(Σ) ? 1 and some G?≤ Aut(Σ). In this paper, we solve the remaining cases by classifying all the graphs Σ such that S(Σ) is locally (G, s)-distance transitive for some s?≥ 2 diam(Σ) and some G?≤ Aut(Σ). As a corollary, we get a classification of all the graphs whose subdivision graph is locally distance transitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号