首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We initiate the study of classical knots through the homotopy class of the nth evaluation map of the knot, which is the induced map on the compactified n-point configuration space. Sending a knot to its nth evaluation map realizes the space of knots as a subspace of what we call the nth mapping space model for knots. We compute the homotopy types of the first three mapping space models, showing that the third model gives rise to an integer-valued invariant. We realize this invariant in two ways, in terms of collinearities of three or four points on the knot, and give some explicit computations. We show this invariant coincides with the second coefficient of the Conway polynomial, thus giving a new geometric definition of the simplest finite-type invariant. Finally, using this geometric definition, we give some new applications of this invariant relating to quadrisecants in the knot and to complexity of polygonal and polynomial realizations of a knot.  相似文献   

2.
Kishino's knot is not detected by the fundamental group or the bracket polynomial. However, we can show that Kishino's knot is not equivalent to the unknot by applying either the 3-strand bracket polynomial or the surface bracket polynomial. In this paper, we construct two non-trivial virtual knot diagrams, KD and Km, that are not detected by the 1-strand or the 2-strand bracket polynomial. From these diagrams, we construct two infinite families of non-classical virtual knot diagrams that are not detected by the bracket polynomial. Additionally, these virtual knot diagrams are trivial as flats.  相似文献   

3.
In this paper, we describe the twisted Alexander polynomial of twist knots for nonabelian SL(2,C)-representations and investigate in detail the coefficient of the highest degree term as a function on the representation space of the knot group. In particular, we introduce the notion of monic representation and discuss its relation to the fiberedness of knots.  相似文献   

4.
This paper explicitly provides two exhaustive and infinite families of pairs (M,k), where M is a lens space and k is a non-hyperbolic knot in M, which produces a manifold homeomorphic to M, by a non-trivial Dehn surgery. Then, we observe the uniqueness of such knot in such lens space, the uniqueness of the slope, and that there is no preserving homeomorphism between the initial and the final M's. We obtain further that Seifert fibered knots, except for the axes, and satellite knots are determined by their complements in lens spaces. An easy application shows that non-hyperbolic knots are determined by their complement in atoroidal and irreducible Seifert fibered 3-manifolds.  相似文献   

5.
In this paper we define a lassoing on a link, a local addition of a trivial knot to a link. Let K be an s-component link with the Conway polynomial non-zero. Let L be a link which is obtained from K by r-iterated lassoings. The complete splitting number split(L) is greater than or equal to r+s−1, and less than or equal to r+split(K). In particular, we obtain from a knot by r-iterated component-lassoings an algebraically completely splittable link L with split(L)=r. Moreover, we construct a link L whose unlinking number is greater than split(L).  相似文献   

6.
7.
James Conant 《Topology》2004,43(1):119-156
Motivated by the lower central series of a group, we define the notion of a grope cobordism between two knots in a 3-manifold. Just like an iterated group commutator, each grope cobordism has a type that can be described by a rooted unitrivalent tree. By filtering these trees in different ways, we show how the Goussarov-Habiro approach to finite type invariants of knots is closely related to our notion of grope cobordism. Thus our results can be viewed as a geometric interpretation of finite type invariants.The derived commutator series of a group also has a three-dimensional analogy, namely knots modulo symmetric grope cobordism. On one hand this theory maps onto the usual Vassiliev theory and on the other hand it maps onto the Cochran-Orr-Teichner filtration of the knot concordance group, via symmetric grope cobordism in 4-space. In particular, the graded theory contains information on finite type invariants (with degree h terms mapping to Vassiliev degree 2h), Blanchfield forms or S-equivalence at h=2, Casson-Gordon invariants at h=3, and for h=4 one finds the new von Neumann signatures of a knot.  相似文献   

8.
In this paper, applying Chebyshev polynomials we give a basic proof of the irreducibility over the complex number field of the defining polynomial of SL2(C)-character variety of twist knots in infinitely many cases. The irreducibility, combined with a result in the paper of M. Boileau, S. Boyer, A.W. Reid and S. Wang in 2010, shows the minimality of infinitely many twist knots for a partial order on the set of prime knots defined by using surjective group homomorphisms between knot groups. In Appendix B, we also give a straightforward proof of the result of Boileau et al.  相似文献   

9.
Associated with each oriented link is the two variable Homflypt polynomial. The Morton–Franks–Williams (MFW) inequality gives rise to an expression for the Homflypt polynomial with MFW coefficient polynomials. These MFW coefficient polynomials are labeled in a braid-dependent manner and may be zero, but display a number of interesting relations. One consequence is an expression for the first three Laurent coefficient polynomials in z as a function of the other coefficient polynomials and three link invariants: the minimum v-degree and v-span of the Homflypt polynomial, and the Conway polynomial.  相似文献   

10.
We say a knot k in the 3-sphere S3 has PropertyIE if the infinite cyclic cover of the knot exterior embeds into S3. Clearly all fibred knots have Property IE.There are infinitely many non-fibred knots with Property IE and infinitely many non-fibred knots without property IE. Both kinds of examples are established here for the first time. Indeed we show that if a genus 1 non-fibred knot has Property IE, then its Alexander polynomial Δk(t) must be either 1 or 2t2−5t+2, and we give two infinite families of non-fibred genus 1 knots with Property IE and having Δk(t)=1 and 2t2−5t+2 respectively.Hence among genus 1 non-fibred knots, no alternating knot has Property IE, and there is only one knot with Property IE up to ten crossings.We also give an obstruction to embedding infinite cyclic covers of a compact 3-manifold into any compact 3-manifold.  相似文献   

11.
We consider a condition on a pair of the Alexander polynomials of knots which are realizable by a pair of knots with Gordian distance one. We show that there are infinitely many mutually disjoint infinite subsets in the set of the Alexander polynomials of knots such that every pair of distinct elements in each subset is not realizable by any pair of knots with Gordian distance one. As one of the subsets, we have an infinite set containing the Alexander polynomials of the trefoil knot and the figure eight knot. We also show that every pair of distinct Alexander polynomials such that one is the Alexander polynomial of a slice knot is realizable by a pair of knots of Gordian distance one, so that every pair of distinct elements in the infinite subset consisting of the Alexander polynomials of slice knots is realizable by a pair of knots with Gordian distance one. These results solve problems given by Y. Nakanishi and by I. Jong.  相似文献   

12.
Bourgoin defined the notion of a twisted link which corresponds to a stable equivalence class of links in oriented thickenings. It is a generalization of a virtual link. Some invariants of virtual links are extended for twisted links including the knot group and the Jones polynomial. In this paper, we generalize a multivariable polynomial invariant of a virtual link to a twisted link. We also introduce a quandle of a twisted link.  相似文献   

13.
In this paper, we prove that the Jones polynomial of a link diagram obtained through repeated tangle replacement operations can be computed by a sequence of suitable variable substitutions in simpler polynomials. For the case that all the tangles involved in the construction of the link diagram have at most k crossings (where k is a constant independent of the total number n of crossings in the link diagram), we show that the computation time needed to calculate the Jones polynomial of the link diagram is bounded above by O(nk). In particular, we show that the Jones polynomial of any Conway algebraic link diagram with n crossings can be computed in O(n2) time. A consequence of this result is that the Jones polynomial of any Montesinos link and two bridge knot or link of n crossings can be computed in O(n2) time.  相似文献   

14.
Stefan Friedl 《Topology》2006,45(6):929-953
Every element in the first cohomology group of a 3-manifold is dual to embedded surfaces. The Thurston norm measures the minimal ‘complexity’ of such surfaces. For instance the Thurston norm of a knot complement determines the genus of the knot in the 3-sphere. We show that the degrees of twisted Alexander polynomials give lower bounds on the Thurston norm, generalizing work of McMullen and Turaev. Our bounds attain their most concise form when interpreted as the degrees of the Reidemeister torsion of a certain twisted chain complex. We show that these lower bounds give the correct genus bounds for all knots with 12 crossings or less, including the Conway knot and the Kinoshita-Terasaka knot which have trivial Alexander polynomial.We also give obstructions to fibering 3-manifolds using twisted Alexander polynomials and detect all knots with 12 crossings or less that are not fibered. For some of these it was unknown whether or not they are fibered. Our work in particular extends the fibering obstructions of Cha to the case of closed manifolds.  相似文献   

15.
We have a knot quandle and a fundamental class as invariants for a surface-knot. These invariants can be defined for a classical knot in a similar way, and it is known that the pair of them is a complete invariant for classical knots. In surface-knot theory the situation is different: There exist arbitrarily many inequivalent surface-knots of genus g with the same knot quandle, and there exist two inequivalent surface-knots of genus g with the same knot quandle and with the same fundamental class.  相似文献   

16.
17.
We compute q-holonomic formulas for the HOMFLY polynomials of 2-bridge links colored with one-column (or one-row) Young diagrams.  相似文献   

18.
Recently Stoimenow showed that for every knot K and any nN and u0?u(K) there is a prime knot Kn,uo which is n-equivalent to the knot K and has unknotting number u(Kn,uo) equal to u0. The similar result has been obtained for the 4-ball genus gs of a knot. Stoimenow also proved that any admissible value of the Tristram-Levine signature σξ can be realized by a knot with the given Vassiliev invariants of bounded order. In this paper, we show that for every knot K with genus g(K) and any nN and m?g(K) there exists a prime knot L which is n-equivalent to K and has genus g(L) equal to m.  相似文献   

19.
The geometric representation of a knot is not too dissimilar from a graph and this interaction has helped mathematicians to solve many problems. In this paper, we apply graph theory tools to study the classification of virtual knots and links. We define virtual planar graphs and compute virtual path width of an associated graph of a virtual link. We show that the virtual path width of an associated graph is equal to the virtual bridge number of a pseudo prime knot.  相似文献   

20.
We prove the quantum filtration on the Khovanov-Rozansky link cohomology Hp with a general degree (n+1) monic potential polynomial p(x) is invariant under Reidemeister moves, and construct a spectral sequence converging to Hp that is invariant under Reidemeister moves, whose E1 term is isomorphic to the Khovanov-Rozansky sl(n)-cohomology Hn. Then we define a generalization of the Rasmussen invariant, and study some of its properties. We also discuss relations between upper bounds of the self-linking number of transversal links in standard contact S3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号