where λR+:=[0,∞), and satisfies the conditions
We prove a strong maximum principle for the linear operator defined by the left-hand side of (1), and use this to show that for every solution (λ,u) of (1)–(2), u is positive on Ta,b . In addition, we show that there exists λmax>0 (possibly λmax=∞), such that, if 0λ<λmax then (1)–(2) has a unique solution u(λ), while if λλmax then (1)–(2) has no solution. The value of λmax is characterised as the principal eigenvalue of an associated weighted eigenvalue problem (in this regard, we prove a general existence result for such eigenvalues for problems with general, nonnegative weights).  相似文献   

14.
Liftable <Emphasis Type="Italic">D</Emphasis><Subscript>4</Subscript>-covers     
Louis Hugo Brewis 《manuscripta mathematica》2008,126(3):293-313
Let k be an algebraically closed field of characteristic p and let G \hookrightarrow Autk(k[[ t ]] ){G \hookrightarrow {\rm Aut}_k(k\left[\kern-0.15em\left[ t \right]\kern-0.15em\right] )} be a faithful action on a local power series ring over k. Let R be a discrete valuation ring of characteristic 0 with residue field k. One asks, whether it is possible to find a faithful action G \hookrightarrow AutR(R[[ t ]] ){G \hookrightarrow {\rm Aut}_R(R\left[\kern-0.15em\left[ t \right]\kern-0.15em\right] )} which reduces to the given action, i.e., a lift to characteristic 0. We show that liftable actions exists in the case that G  =  D 4 and p  =  2. In fact we introduce a family, the supersimple D 4-actions, which can always be lifted to characteristic 0.  相似文献   

15.
On the solvability in Hilbert space of certain nonlinear operator equations depending on parameters     
Athanassios G. Kartsatos  Richard D. Mabry 《Journal of Mathematical Analysis and Applications》1986,120(2)
The equation (*) Au − λTu + μCu = f is studied in a real separable Hilbert space H. Here, λ, μ > 0 are fixed constants and f ε H is fixed. The operators A: D HH, C: D HH are monotone and compact, respectively, where D denotes a closed ball in H. The operator T: HH is linear, compact, self-adjoint and positive-definite. Degree-theoretic arguments are used for the existence of solutions of (*) and extensions of recent results of Kesavan are established. For example, it is shown, under additional assumptions, that there exists a constant μ0 > 0 such that (*) is solvable for all μ μ0 and all λ ε R.  相似文献   

16.
Markov-Type Inequalities for Products of Müntz Polynomials     
Tams Erdlyi 《Journal of Approximation Theory》2001,112(2):171
Let Λ(λj)j=0 be a sequence of distinct real numbers. The span of {xλ0xλ1, …, xλn} over is denoted by Mn(Λ)span{xλ0xλ1, …, xλn}. Elements of Mn(Λ) are called Müntz polynomials. The principal result of this paper is the following Markov-type inequality for products of Müntz polynomials. T 2.1. LetΛ(λj)j=0andΓ(γj)j=0be increasing sequences of nonnegative real numbers. Let

Then

18(n+m+1)(λnm).In particular ,

Under some necessary extra assumptions, an analog of the above Markov-type inequality is extended to the cases when the factor x is dropped, and when the interval [0, 1] is replaced by [ab](0, ∞).  相似文献   

17.
Julia Sets of Certain Exponential Functions     
Piyapong Niamsup 《Journal of Mathematical Analysis and Applications》2000,250(2):598
We characterize the Julia sets of certain exponential functions. We show that the Julia sets J(Fλn) of Fλn(z) = λnezn where λn > 0 is the whole plane , provided that limk → ∞ Fkλn(0) = ∞. In particular, this is true when λn are real numbers such that . On the other hand, if , then J(Fλn) is nowhere dense in and is the complement of the basin of attraction of the unique real attractive fixed point of Fλn. We then prove similar results for the functions[formula] where λi    − {0}, 1 ≤ i ≤ n + 1, aj > 1, 1 ≤ j ≤ n, and m, n ≥ 1.  相似文献   

18.
Approximation mit einer erweiterten Klasse von Exponentialsummen     
Gunter Welker 《Journal of Approximation Theory》1981,33(4)
Wir behandeln das Problem, eine stetige Funktion f im Intervall [0, 1] mit einer erweiterten Klasse von Exponentialsummen gleichmäβig zu approximieren. Die Klasse Vnτ(S) besteht dabei aus allen reellwertigen Lösungen von homogenen, linearen Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten, bei denen das charakteristische Polynom nur Nullstellen in einer Menge S der komplexen Zahlen besitzt. Wir geben einen sehr kurzen Beweis dafür, daβ jede solche Summe n-ter Ordnung höchstens n − 1 Nullstellen in [0, 1] besitzt, wenn die Frequenzen im Streifen T={λC:|Imλ|<π} liegen. Bei Beschränkung auf T={λC:0<|Imλ|≤π} läβt sich eine Minimallösung notwendig und hinreichend charakterisieren durch eine Alternante der Länge n + k + 1 und die Minimallösung ist eindeutig bestimmt, falls die Frequenzen im Innern von T* liegen.  相似文献   

19.
Strong limit theorems for quasi-orthogonal random fields     
F. Mricz 《Journal of multivariate analysis》1989,30(2)
This is a systematic and unified treatment of a variety of seemingly different strong limit problems. The main emphasis is laid on the study of the a.s. behavior of the rectangular means ζmn = 1/(λ1(m) λ2(n)) Σi=1m Σk=1n Xik as either max{m, n} → ∞ or min{m, n} → ∞. Here {Xik: i, k ≥ 1} is an orthogonal or merely quasi-orthogonal random field, whereas {λ1(m): m ≥ 1} and {λ2(n): n ≥ 1} are nondecreasing sequences of positive numbers subject to certain growth conditions. The method applied provides the rate of convergence, as well. The sufficient conditions obtained are shown to be the best possible in general. Results on double subsequences and 1-parameter limit theorems are also included.  相似文献   

20.
Some presentations of the real number field     
A. S. Morozov 《Algebra and Logic》2012,51(1):66-88
It is proved that every two Σ-presentations of an ordered field \mathbbR \mathbb{R} of reals over \mathbbH\mathbbF ( \mathbbR ) \mathbb{H}\mathbb{F}\,\left( \mathbb{R} \right) , whose universes are subsets of \mathbbR \mathbb{R} , are mutually Σ-isomorphic. As a consequence, for a series of functions f:\mathbbR ? \mathbbR f:\mathbb{R} \to \mathbb{R} (e.g., exp, sin, cos, ln), it is stated that the structure \mathbbR \mathbb{R} = 〈R, +, ×, <, 0, 1, f〉 lacks such Σ-presentations over \mathbbH\mathbbF ( \mathbbR ) \mathbb{H}\mathbb{F}\,\left( \mathbb{R} \right) .  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The computer extended perturbation series method is used to analyze the problem of steady viscous flow in slender tubes. The objective is to obtain an expansion in a power series of λ (= ɛ R, ɛ is a small parameter and is a streamwise Reynolds number) and look for its analytic continuation. Such an expansion was usually terminated at the second or third order term and consequently they have a very limited utility. Sufficiently large number of terms in the series, representing physical quantities are, generated for the detail analysis which enables to get converging Pade’ sums for large λ. Domb-Sykes plot enables in finding singularity restricting the convergence of the series. Useful results valid up to λ = 15 are obtained for different derived quantities whereas in earlier findings [6], analysis could be done only up to λ = 10 resulting into a substantial improvement in the present study.Received: September 17, 2003; revised: July 5, 2004  相似文献   

2.
Given two self-adjoint operators A and V = V − V− , we study the motion of the eigenvalues of the operator A(t) = A − tV as t increases. Let α > 0 and let λ be a regular point for A. We consider the quantities N(V; λ, α), N− (V; λ, α), and N0(V; λ, α) defined as the number of eigenvalues of the operator A(t) that pass point λ from the right to the left, from the left to the right, or change the direction of their motion exactly at point λ, respectively, as t increases from 0 to α > 0. We study asymptotic characteristics of these quantities as α → ∞. In the present paper, the results obtained previously [O. L. Safronov, Comm. Math. Phys.193 (1998), 233–243] are extended and given new applications to differential operators.  相似文献   

3.
We investigate the rate of convergence of series of the form
where λ = (λn), 0 = λ0 < λn ↑ + ∞, n → + ∞, β = {βn: n ≥ 0} ⊂ ℝ+, and τ(x) is a nonnegative function nondecreasing on [0; +∞), and
where the sequence λ = (λn) is the same as above and f (x) is a function decreasing on [0; +∞) and such that f (0) = 1 and the function ln f(x) is convex on [0; +∞).__________Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, No. 12, pp. 1665 – 1674, December, 2004.  相似文献   

4.
A recent method of Soundararajan enables one to obtain improved Ω-result for finite series of the form ∑nf(n) cos (2πλnx+β) where 0≤λ1λ2≤. . . and β are real numbers and the coefficients f(n) are all non-negative. In this paper, Soundararajan’s method is adapted to obtain improved Ω-result for E(t), the remainder term in the mean-square formula for the Riemann zeta-function on the critical line. The Atkinson series for E(t) is of the above type, but with an oscillating factor (−1)n attached to each of its terms.  相似文献   

5.
In this paper, we consider a problem of the type −Δu = λ(f(u) + μg(u)) in Ω, u¦∂Ω = 0, where Ω Rn is an open-bounded set, f, g are continuous real functions on R, and λ, μ ε R. As an application of a new approach to nonlinear eigenvalues problems, we prove that, under suitable hypotheses, if ¦μ¦ is small enough, then there is some λ > 0 such that the above problem has at least three distinct weak solutions in W01,2(Ω).  相似文献   

6.
For a fixed integer m ≥ 0, and for n = 1, 2, 3, ..., let λ2m, n(x) denote the Lebesgue function associated with (0, 1,..., 2m) Hermite-Fejér polynomial interpolation at the Chebyshev nodes {cos[(2k−1) π/(2n)]: k=1, 2, ..., n}. We examine the Lebesgue constant Λ2m, n max{λ2m, n(x): −1 ≤ x ≤ 1}, and show that Λ2m, n = λm, n(1), thereby generalising a result of H. Ehlich and K. Zeller for Lagrange interpolation on the Chebyshev nodes. As well, the infinite term in the asymptotic expansion of Λ2m, n) as n → ∞ is obtained, and this result is extended to give a complete asymptotic expansion for Λ2, n.  相似文献   

7.
On attache à tout graphe G son polynôme chromatiqueχG (λ), qui dénombre ses colorations régulières avecλ couleurs. D’après Stanley, on sait que |χG ( − 1)| est égal au nombre d’orientations acycliques du graphe, un résultat qui fut raffiné par Greene et Zaslavsky. Nous nous proposons de l’affiner davantage en interprétant, avec l’aide de certaines orientations acycliques, les coefficients deχG (λ) développé en puissances de λ et surtout en puissances de (λ −  1). L’utilisation systématique des fonctions génératrices des fonctions d’ensembles permet d’avoir des démonstrations très courtes et explicatives. Elles se veulent une réponse à la suggestion faite par Gebhard et Sagan, qui ont déjà trouvé des démonstrations combinatoires de deux résultats de Greene et Zaslavsky. Les fonctions d’ensembles permettent aussi d’établir une série d’interprétations nouvelles de l’invariant βGde Crapo. Cet article donne également un nouvel éclat aux résultats classiques de Cartier, Foata, Viennot, Brenti, Gessel et Stanley. The chromatic polynomialχG (λ), which is associated with each graph G, enumerates its regular colorations with λ colors. Stanley showed that |χG ( − 1)| is equal to the number of acyclic orientations of the graph, a result that was refined by Greene and Zaslavsky. The purpose of the paper is to show that a further refinement can be obtained by interpreting each coefficient of χG(λ), when the polynomial is developed with respect to powers of λ and (λ −  1). A systematic use of the generating functions for set functions enables us to have very short and instructive proofs. Gebhard and Sagan, who had already found combinatorial proofs of two results by Greene and Zaslavsky, suggested that further proofs were to be found. Finally, the set functions algebra allows us to establish a series of new interpretations for Crapo’sβG invariant. This paper also brings a new light to the classical results due to Cartier, Foata, Viennot, Brenti, Gessel and Stanley.  相似文献   

8.
Suppose that {z(t)} is a non-Gaussian vector stationary process with spectral density matrixf(λ). In this paper we consider the testing problemH: ∫ππ K{f(λ)} =cagainstA: ∫ππ K{f(λ)} c, whereK{·} is an appropriate function andcis a given constant. For this problem we propose a testTnbased on ∫ππ K{f(λ)} =c, wheref(λ) is a nonparametric spectral estimator off(λ), and we define an efficacy ofTnunder a sequence of nonparametric contiguous alternatives. The efficacy usually depnds on the fourth-order cumulant spectraf4Zofz(t). If it does not depend onf4Z, we say thatTnis non-Gaussian robust. We will give sufficient conditions forTnto be non-Gaussian robust. Since our test setting is very wide we can apply the result to many problems in time series. We discuss interrelation analysis of the components of {z(t)} and eigenvalue analysis off(λ). The essential point of our approach is that we do not assume the parametric form off(λ). Also some numerical studies are given and they confirm the theoretical results.  相似文献   

9.
We study the Klein–Gordon equation coupled with an interaction term (□+m2)φ+λφp=0. In the linear case (λ=0) a kind of generalized Noether's theorem gives us a conserved quantity. The purpose of this paper is to find an analogue of this conserved quantity in the interacting case. We will see that we can do this perturbatively, and we define explicitly a conserved quantity, using a perturbative expansion based on Planar Trees and a kind of Feynman rule. Only the case p=2 is treated but our approach can be generalized to any p-theory.  相似文献   

10.
A new class of symmetric polynomials in n variables z = (z1,…, zn), denoted tλ(z), and labelled by partitions λ = [λ1 … λn] is defined in terms of standard tableaux (equivalently, in terms of Gel'fand-Weyl patterns of the general linear group GL(n,C)). The tλ(z) are shown to be a -basis of the ring of all symmetric polynomials in n variables. In contrast to the usual basis sets such as the Schur functions eλ(z), which are homogeneous polynomials in the zi, the tλ(z) are inhomogeneous. This property is reflected in the fact that the tλ(z) are a natural basis for the expansion of certain (inhomogeneous) symmetric polynomials constructed from rising factorials. This and several other properties of the tλ(z) are proved. Two generalizations of the tλ(z) are also given. The first generalizes the tλ(z) to a 1-parameter family of symmetric polynomials, Tλ(α; z), where α is an arbitrary parameter. The Tλ(α; z) are shown to possess properties similar to those of the tλ(z). The second generalizes the tλ(z) to a class of skew-tableau symmetric polynomials, tλ/μ(z), for which only a few preliminary results are given.  相似文献   

11.
LetΛ :=(λk)k=0be a sequence of distinct nonnegative real numbers withλ0 :=0 and ∑k=1 1/λk<∞. Let(0, 1) and(0, 1−) be fixed. An earlier work of the authors shows that [formula]is finite. In this paper an explicit upper bound forC(Λ) is given. In the special caseλk :=kα,α>1, our bounds are essentially sharp.  相似文献   

12.
Le nombre maximal de lignes de matrices seront désignées par:
1. (a) R(k, λ) si chaque ligne est une permutation de nombres 1, 2,…, k et si chaque deux lignes différentes coïncide selon λ positions;
2. (b) S0(k, λ) si le nombre de colonnes est k et si chaque deux lignes différentes coïncide selon λ positions et si, en plus, il existe une colonne avec les éléments y1, y2, y3, ou y1 = y2y3;
3. (c) T0(k, λ) si c'est une (0, 1)-matrice et si chaque ligne contient k unités et si chaque deux lignes différentes contient les unités selon λ positions et si, en plus, il existe une colonne avec les éléments 1, 1, 0.
La fonction T0(k, λ) était introduite par Chvátal et dans les articles de Deza, Mullin, van Lint, Vanstone, on montrait que T0(k, λ) max(λ + 2, (k − λ)2 + k − λ + 1). La fonction S0(k, λ) est introduite ici et dans le Théorème 1 elle est étudiée analogiquement; dans les remarques 4, 5, 6, 7 on donne les généralisations de problèmes concernant T0(k, λ), S0(k, λ), dans la remarque 9 on généralise le problème concernant R(k, λ). La fonction R(k, λ) était introduite et étudiée par Bolton. Ci-après, on montre que R(k, λ) S0(k, λ) T0(k, λ) d'où découle en particulier: R(k, λ) λ + 2 pour λ k + 1 − (k + 2)1/2; R(k, λ) = 0(k2) pour k − λ = 0(k); R(k, λ) (k − 1)2 − (k + 2) pour k 1191.  相似文献   

13.
Let TR be a time-scale, with a=infT, b=supT. We consider the nonlinear boundary value problem
(2)
(4)
u(a)=u(b)=0,
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号