首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
We study the optimal stopping problem for dynamic risk measures represented by Backward Stochastic Differential Equations (BSDEs) with jumps and its relation with reflected BSDEs (RBSDEs). The financial position is given by an RCLL adapted process. We first state some properties of RBSDEs with jumps when the obstacle process is RCLL only. We then prove that the value function of the optimal stopping problem is characterized as the solution of an RBSDE. The existence of optimal stopping times is obtained when the obstacle is left-upper semi-continuous along stopping times. Finally, we investigate robust optimal stopping problems related to the case with model ambiguity and their links with mixed control/optimal stopping game problems. We prove that, under some hypothesis, the value function is equal to the solution of an RBSDE. We then study the existence of saddle points when the obstacle is left-upper semi-continuous along stopping times.  相似文献   

2.
The objective of this study is to provide an alternative characterization of the optimal value function of a certain Black–Scholes-type optimal stopping problem where the underlying stochastic process is a general random walk, i.e. the process constituted by partial sums of an IID sequence of random variables. Furthermore, the pasting principle of this optimal stopping problem is studied.   相似文献   

3.
We generalize the framework of [18] for optimal stopping time problem to allow a certain restricted class of stopping times. By using classical results in probability theory on families of random variables indexed by a restricted family of stopping times, we prove the existence of an optimal time, givecharacterizations of the minimal and maximal optimal stopping times, and provide some local properties of the value function family, in concert with all special cases studied previously.  相似文献   

4.
In this paper we consider stopping problems for continuous-time Markov chains under a general risk-sensitive optimization criterion for problems with finite and infinite time horizon. More precisely our aim is to maximize the certainty equivalent of the stopping reward minus cost over the time horizon. We derive optimality equations for the value functions and prove the existence of optimal stopping times. The exponential utility is treated as a special case. In contrast to risk-neutral stopping problems it may be optimal to stop between jumps of the Markov chain. We briefly discuss the influence of the risk sensitivity on the optimal stopping time and consider a special house selling problem as an example.  相似文献   

5.
We study a problem of optimal investment/consumption over an infinite horizon in a market consisting of a liquid and an illiquid asset. The liquid asset is observed and can be traded continuously, while the illiquid one can only be traded and observed at discrete random times corresponding to the jumps of a Poisson process. The problem is a nonstandard mixed discrete/continuous optimal control problem, which we face by the dynamic programming approach. The main goal of the paper is the characterization of the value function as unique viscosity solution of an associated Hamilton–Jacobi–Bellman equation. We then use such a result to build a numerical algorithm, allowing one to approximate the value function and so to measure the cost of illiquidity.  相似文献   

6.
In the dual risk model, we consider the optimal dividend and capital injection problem, which involves a random time horizon and a ruin penalty. Both fixed and proportional costs from the transactions of capital injection are considered. The objective is to maximize the total value of the expected discounted dividends, and the penalized discounted both capital injections and ruin penalty during the horizon, which is described by the minimum of the time of ruin and an exponential random variable. The explicit solutions for optimal strategy and value function are obtained, when the income jumps follow a hyper-exponential distribution.Besides, some numerical examples are presented to illustrate our results.  相似文献   

7.
An American option (or, warrant) is the right, but not the obligation, to purchase or sell an underlying equity at any time up to a predetermined expiration date for a predetermined amount. A perpetual American option differs from a plain American option in that it does not expire. In this study, we solve the optimal stopping problem of a perpetual American option (both call and put) in discrete time using linear programming duality. Under the assumption that the underlying stock price follows a discrete time and discrete state Markov process, namely a geometric random walk, we formulate the pricing problem as an infinite dimensional linear programming (LP) problem using the excessive-majorant property of the value function. This formulation allows us to solve complementary slackness conditions in closed-form, revealing an optimal stopping strategy which highlights the set of stock-prices where the option should be exercised. The analysis for the call option reveals that such a critical value exists only in some cases, depending on a combination of state-transition probabilities and the economic discount factor (i.e., the prevailing interest rate) whereas it ceases to be an issue for the put.  相似文献   

8.
Piecewise deterministic Markov processes (PDPs) are continuous time homogeneous Markov processes whose trajectories are solutions of ordinary differential equations with random jumps between the different integral curves. Both continuous deterministic motion and the random jumps of the processes are controlled in order to minimize the expected value of a performance criterion involving discounted running and boundary costs. Under fairly general assumptions, we will show that there exists an optimal control, that the value function is Lipschitz continuous and that a generalized Bellman-Hamilton-Jacobi (BHJ) equation involving the Clarke generalized gradient is a necessary and sufficient optimality condition for the problem.  相似文献   

9.
Consider the optimal stopping problem of a one-dimensional diffusion with positive discount. Based on Dynkin's characterization of the value as the minimal excessive majorant of the reward and considering its Riesz representation, we give an explicit equation to find the optimal stopping threshold for problems with one-sided stopping regions, and an explicit formula for the value function of the problem. This representation also gives light on the validity of the smooth-fit (SF) principle. The results are illustrated by solving some classical problems, and also through the solution of: optimal stopping of the skew Brownian motion and optimal stopping of the sticky Brownian motion, including cases in which the SF principle fails.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号