首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
In this paper, Adomian’s decomposition method is proposed to solve the well-known Blasius equation. Comparison with homotopy perturbation method and Howarth’s numerical solution reveals that the Adomian’s decomposition method is of high accuracy.  相似文献   

2.
A similarity equation of the momentum boundary layer is analytically studied for a moving flat plate with mass transfer in a stationary fluid by a newly developed technique namely homotopy analysis method (HAM). The equation shows its significance for the practical problem of a shrinking sheet with a constant velocity, and only admits the existence of the solution with mass suction at the wall surface. The present work provides analytically new solution branch of the Blasius equation with a shrinking sheet in different solution areas, including both multiple solutions and unique solution with the aid of an introduced auxiliary function. The analytical results show that quite complicated behavior with three different solution areas controlled by two critical mass transfer parameters exists, which agrees well with the numerical techniques and greatly differs from the continuously stretching surface problem and the Blasius problem with a free stream. The new analytical solution branch of the Blasius equation with a shrinking sheet enriches the solution family of the Blasius equation, and helps to deeply understand the Blasius equation.  相似文献   

3.
In this article, Laplace decomposition method (LDM) is applied to obtain series solutions of classical Blasius equation. The technique is based on the application of Laplace transform to nonlinear Blasius flow equation. The nonlinear term can easily be handled with the help of Adomian polynomials. The results of the present technique have closed agreement with series solutions obtained with the help of Adomian decomposition method (ADM), variational iterative method (VIM) and homotopy perturbation method (HPM).  相似文献   

4.
Consideration is given to the homoclinic solutions of ordinary differential equations. We first review the Melnikov analysis to obtain Melnikov function, when the perturbation parameter is zero and when the differential equation has a hyperbolic equilibrium. Since Melnikov analysis fails, using Homotopy Analysis Method (HAM, see [Liao SJ. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press; 2003; Liao SJ. An explicit, totally analytic approximation of Blasius’ viscous flow problems. Int J Non-Linear Mech 1999;34(4):759–78; Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004;147(2):499–513] and others [Abbasbandy S. The application of the homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 2006;360:109–13; Hayat T, Sajid M. On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder. Phys Lett A, in press; Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn, in press]), we obtain homoclinic solution for a differential equation with zero perturbation parameter and with hyperbolic equilibrium. Then we show that the Melnikov type function can be obtained as a special case of this homotopy analysis method. Finally, homoclinic solutions are obtained (for nontrivial examples) analytically by HAM, and are presented through graphs.  相似文献   

5.
In this paper we present a new efficient modification of the homotopy perturbation method with x 3 force nonlinear undamped oscillators for the first time that will accurate and facilitate the calculations. The He’s homotopy perturbation method is modified by adding a term to linear operator depends on the equation and boundary conditions. We find that this modified homotopy perturbation method works very well for the wide range of time and boundary conditions for nonlinear oscillator. Only two or three iteration leads to high accuracy of the solutions. We then conduct a comparative study between the new modification and the homotopy perturbation method for strongly nonlinear oscillators. Numerical illustrations are investigated to show the accurate of the techniques. The new modified method accelerates the rapid convergence of the solution, reduces the error solution and increases the validity range. The new modification introduces a promising tool for many nonlinear problems.  相似文献   

6.
In this paper, we first introduce a new homotopy perturbation method for solving a fractional order nonlinear cable equation. By applying proposed method the nonlinear equation it is changed to linear equation for per iteration of homotopy perturbation method. Then, we solve obtained problems with separation method. In examples, we illustrate that the exact solution is obtained in one iteration by convenience separating of source term in given equation.  相似文献   

7.
The purpose of this paper is to obtain the approximation solution of linear and strong nonlinear weakly singular Volterra integral equation of the second kind, especially for such a situation that the equation is of nonsmooth solution and the situation that the problem is a strong nonlinear problem. For this purpose, we firstly make a transform to the equation such that the solution of the new equation is as smooth as we like. Through modifying homotopy perturbation method, an algorithm is successfully established to solve the linear and nonlinear weakly singular Volterra integral equation of the second kind. And the convergence of the algorithm is proved strictly. Comparisons are made between our method and other methods, and the results reveal that the modified homotopy perturbation is effective.  相似文献   

8.
The main aim of the present work is to propose a new and simple algorithm for fractional Zakharov–Kuznetsov equations by using homotopy perturbation transform method (HPTM). The Zakharov–Kuznetsov equation was first derived for describing weakly nonlinear ion-acoustic waves in strongly magnetized lossless plasma in two dimensions. The homotopy perturbation transform method is an innovative adjustment in Laplace transform algorithm (LTA) and makes the calculation much simpler. HPTM is not limited to the small parameter, such as in the classical perturbation method. The method gives an analytical solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The numerical solutions obtained by the proposed method indicate that the approach is easy to implement and computationally very attractive.  相似文献   

9.
In this paper, homotopy perturbation transform method and modified homotopy analysis method have been applied to obtain the approximate solutions of the time fractional coupled Klein–Gordon–Zakharov equations. We consider fractional coupled Klein–Gordon–Zakharov equation with appropriate initial values using homotopy perturbation transform method and modified homotopy analysis method. Here we obtain the solution of fractional coupled Klein–Gordon–Zakharov equation, which is obtained by replacing the time derivatives with a fractional derivatives of order α ∈ (1, 2], β ∈ (1, 2]. Through error analysis and numerical simulation, we have compared approximate solutions obtained by two present methods homotopy perturbation transform method and modified homotopy analysis method. The fractional derivatives here are described in Caputo sense.  相似文献   

10.
The main aim of the present work is to propose a new and simple algorithm for space-fractional telegraph equation, namely new fractional homotopy analysis transform method (HATM). The fractional homotopy analysis transform method is an innovative adjustment in Laplace transform algorithm (LTA) and makes the calculation much simpler. The proposed technique solves the nonlinear problems without using Adomian polynomials and He’s polynomials which can be considered as a clear advantage of this new algorithm over decomposition and the homotopy perturbation transform method (HPTM). The beauty of the paper is error analysis which shows that our solution obtained by proposed method converges very rapidly to the known exact solution. The numerical solutions obtained by proposed method indicate that the approach is easy to implement and computationally very attractive. Finally, several numerical examples are given to illustrate the accuracy and stability of this method.  相似文献   

11.
The aim of this article is to construct a new efficient recurrent relation to solve nonlinear Burgers' equation. The homotopy perturbation method is used to solve this equation. Because Burgers' equation arises in many applications, it is worth trying new solution methods. Comparison of the results with those of Adomian's decomposition method leads to significant consequences. Four standard problems are used to illustrate the method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

12.
The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct approximate solutions for nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equations with respect to time and space fractional derivatives. Also, we apply complex transformation to convert a time and space fractional nonlinear KPP equation to an ordinary differential equation and use the homotopy perturbation method to calculate the approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.  相似文献   

13.
This paper investigates the forced Duffing equation with integral boundary conditions. Its approximate solution is developed by combining the homotopy perturbation method (HPM) and the reproducing kernel Hilbert space method (RKHSM). HPM is based on the use of the traditional perturbation method and the homotopy technique. The HPM can reduce nonlinear problems to some linear problems and generate a rapid convergent series solution in most cases. RKHSM is also an analytical technique, which can solve powerfully linear boundary value problems. Therefore, the forced Duffing equation with integral boundary conditions can be solved using advantages of these two methods. Two numerical examples are presented to illustrate the strength of the method.  相似文献   

14.
In this work, a partial differential equation, which has several important applications, is investigated, and some techniques based on semianalytic (or quasi‐numerical) approaches are developed to find its solution. In this article, the homotopy perturbation method (HPM), Adomian decomposition method, and the modified homotopy perturbation method are proposed to solve the Eikonal equation. HPM yields solution in convergent series form with easily computable terms, and in some case, yields exact solutions in one iteration. In other hand, in Adomian decomposition method, the approximate solution is considered as an infinite series usually converges to the accurate solution. Moreover, these methods do not require any discretization, linearization, or small perturbation, and therefore reduce the numerical computation a lot. Several test problems are given and results are compared with the variational iteration method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

15.
In this paper, we couple the iteration method with the perturbation method to solve the well-known Blasius equation. The obtained approximate analytic solutions are valid for the whole solution domain. Comparison with Howarth’s numerical solution reveals that the proposed method is of high accuracy, the first iteration step leads to 6.8% accuracy, and the second iteration step yields the 0.73% accuracy of initial slop.  相似文献   

16.
In this paper, the quadratic Riccati differential equation is solved by means of an analytic technique, namely the homotopy analysis method (HAM). Comparisons are made between Adomian’s decomposition method (ADM), homotopy perturbation method (HPM) and the exact solution and the homotopy analysis method. The results reveal that the proposed method is very effective and simple.  相似文献   

17.
In this paper, a new form of homotopy perturbation method (NHPM) has been adopted for solving the quadratic Riccati differential equation. In this technique, the solution is considered as a Taylor series expansion converges rapidly to the exact solution of the nonlinear equation. Having found the exact solution of the Riccati equation, the capability and the simplicity of the proposed technique is clarified.  相似文献   

18.
The purpose of this paper consists in the finding of the solution for a stationary transport equation using the techniques of homotopy perturbation method (HPM). The results of a numerical example illustrate the accuracy and computational efficiency of the new proposed method.  相似文献   

19.
In the paper, we implement relatively new analytical techniques, the variational iteration method, the Adomian decomposition method and the homotopy perturbation method, for obtaining a rational approximation solution of the fractional Sharma–Tasso–Olever equation. The three methods in applied mathematics can be used as alternative methods for obtaining an analytic and approximate solution for different types of differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. The numerical results demonstrate the significant features, efficiency and reliability of the three approaches.  相似文献   

20.
In this study, we combined homotopy perturbation and Pade techniques for solving homogeneous and inhomogeneous two‐dimensional parabolic equation. Also, we apply our combined method for coupled Burgers' equations. The numerical results demonstrate that our combined method gives the approximate solution with faster convergence rate and higher accuracy than using the classic homotopy perturbation method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 982–995, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号