首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
A weak Cayley table isomorphism is a bijection φ: G → H of groups such that φ(xy) ~ φ(x)φ(y) for all x, y ∈ G. Here ~denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ: G → G forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I: G → G, x → x ?1. Let 𝒲0(G) = ?Aut(G), I? ≤ 𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that all finite irreducible Coxeter groups (except possibly E 8) have trivial weak Cayley table group, as well as most alternating groups. We also consider some sporadic simple groups.  相似文献   

2.
Lingli Wang 《代数通讯》2013,41(2):523-528
Let G be a nonabelian group and associate a noncommuting graph ?(G) with G as follows: The vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. In 1987, Professor J. G. Thompson gave the following conjecture.

Thompson's Conjecture. If G is a finite group with Z(G) = 1 and M is a nonabelian simple group satisfying N(G) = N(M), then G ? M, where N(G):={n ∈ ? | G has a conjugacy class of size n}.

In 2006, A. Abdollahi, S. Akbari, and H. R. Maimani put forward a conjecture (AAM's conjecture) in Abdollahi et al. (2006) as follows.

AAM's Conjecture. Let M be a finite nonabelian simple group and G a group such that ?(G) ? ? (M). Then G ? M.

In this short article we prove that if G is a finite group with ?(G) ? ? (A 10), then G ? A 10, where A 10 is the alternating group of degree 10.  相似文献   

3.
In Tong-Viet's, 2012 work, the following question arose: Question. Which groups can be uniquely determined by the structure of their complex group algebras?

It is proved here that some simple groups of Lie type are determined by the structure of their complex group algebras. Let p be an odd prime number and S = PSL(2, p 2). In this paper, we prove that, if M is a finite group such that S < M < Aut(S), M = ?2 × PSL(2, p 2) or M = SL(2, p 2), then M is uniquely determined by its order and some information about its character degrees. Let X 1(G) be the set of all irreducible complex character degrees of G counting multiplicities. As a consequence of our results, we prove that, if G is a finite group such that X 1(G) = X 1(M), then G ? M. This implies that M is uniquely determined by the structure of its complex group algebra.  相似文献   

4.
《代数通讯》2013,41(3):1453-1474
Abstract

Let 𝕂 be a field of characteristic zero, and R be a G-graded 𝕂-algebra. We consider the algebra R ? E, then deduce its G × ?2-graded polynomial identities starting from the G-graded polynomial identities of R. As a consequence, we describe a basis for the ? n  × ?2-graded identities of the algebras M n (E). Moreover we give the graded cocharacter sequence of M 2(E), and show that M 2(E) is PI-equivalent to M 1,1(E) ? E. This fact is a particular case of a more general result obtained by Kemer.  相似文献   

5.
Tomasz Filar 《代数通讯》2013,41(6):2380-2387
Vasquez showed that for any finite group G there exists a number n(G) such that for every flat Riemannian manifold M with holonomy group G there exists a fiber bundle T → M → N, where T is a flat torus and N is a flat manifold of dimension less than or equal to n(G). We show that n(H) ≤ n(G) if H Δ leftG or G = N ? H and use this result to describe groups with the Vasquez number equal to 2 or 3.  相似文献   

6.
《代数通讯》2013,41(6):2087-2098
Abstract

A proper subgroup M of a group G is called a CC-subgroup of G if the centralizer C G (m) of every m ∈ M # = M ? {1} is contained in M. In this paper we classify all finite groups containing a CC-subgroup, extending work of many authors.  相似文献   

7.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

8.
David I. Stewart 《代数通讯》2013,41(12):4702-4716
Let G be the simple, simply connected algebraic group SL 3 defined over an algebraically closed field K of characteristic p > 0. In this article, we find H 2(G, V) for any irreducible G-module V. When p > 7, we also find H 2(G(q), V) for any irreducible G(q)-module V for the finite Chevalley groups G(q) = SL(3, q) where q is a power of p.  相似文献   

9.
10.
ABSTRACT

Let G be a connected, linear algebraic group defined over ?, acting regularly on a finite dimensional vector space V over ? with ?-structure V ?. Assume that V possesses a Zariski-dense orbit, so that (G, ?, V) becomes a prehomogeneous vector space over ?. We consider the left regular representation π of the group of ?-rational points G ? on the Banach space C0(V ?) of continuous functions on V ? vanishing at infinity, and study the convolution operators π(f), where f is a rapidly decreasing function on the identity component of G ?. Denote the complement of the dense orbit by S, and put S ? = S ∩ V ?. It turns out that, on V ? ? S ?, π(f) is a smooth operator. If S ? = {0}, the restriction of the Schwartz kernel of π(f) to the diagonal defines a homogeneous distribution on V ? ? {0}. Its nonunique extension to V ? can then be regarded as a trace of π(f). If G is reductive, and S and S ? are irreducible hypersurfaces, π(f) corresponds, on each connected component of V ? ? S ?, to a totally characteristic pseudodifferential operator. In this case, the restriction of the Schwartz kernel of π(f) to the diagonal defines a distribution on V ? ? S ? given by some power |p(m)| s of a relative invariant p(m) of (G, ?, V) and, as a consequence of the Fundamental Theorem of Prehomogeneous Vector Spaces, its extension to V ?, and the complex s-plane, satisfies functional equations similar to those for local zeta functions. A trace of π(f) can then be defined by subtracting the singular contributions of the poles of the meromorphic extension.  相似文献   

11.
A permutation group G ≤ Sym(X) on a finite set X is sharp if |G|=∏ l?L(G)(|X| ? l), where L(G) = {|fix(g)| | 1 ≠ g ? G}. We show that no finite primitive permutation groups of twisted wreath type are sharp.  相似文献   

12.
Yong Yang 《代数通讯》2013,41(2):565-574
Suppose that V is a finite faithful irreducible G-module where G is a finite solvable group of odd order. We prove if the action is quasi-primitive, then either F(G) is abelian or G has at least 212 regular orbits on V. As an application, we prove that when V is a finite faithful completely reducible G-module for a solvable group G of odd order, then there exists v ∈ V such that C G (v) ? F 2(G) (where F 2(G) is the 2nd ascending Fitting subgroup of G). We also generalize a result of Espuelas and Navarro. Let G be a group of odd order and let H be a Hall π-subgroup of G. Let V be a faithful G-module over a finite field of characteristic 2, then there exists v ∈ V such that C H (v) ? O π(G).  相似文献   

13.
Consider an algebraic semigroup S and its closed subscheme of idempotents, E(S). When S is commutative, we show that E(S) is finite and reduced; if in addition S is irreducible, then E(S) is contained in a smallest closed irreducible subsemigroup of S, and this subsemigroup is an affine toric variety. It follows that E(S) (viewed as a partially ordered set) is the set of faces of a rational polyhedral convex cone. On the other hand, when S is an irreducible algebraic monoid, we show that E(S) is smooth, and its connected components are conjugacy classes of the unit group.  相似文献   

14.
Timothy J. Ford 《代数通讯》2013,41(9):3277-3298
We study algebra classes and divisor classes on a normal affine surface of the form z 2 = f(x, y). The affine coordinate ring is T = k[x, y, z]/(z 2 ? f), and if R = k[x, y][f ?1] and S = R[z]/(z 2 ? f), then S is a quadratic Galois extension of R. If the Galois group is G, we show that the natural map H1(G, Cl(T)) → H1(G, Pic(S)) factors through the relative Brauer group B(S/R) and that all of the maps are onto. Sufficient conditions are given for H1(G, Cl(T)) to be isomorphic to B(S/R). The groups and maps are computed for several examples.  相似文献   

15.

We give sufficient conditions for a differential equation to have a given semisimple group as its Galois group. For any group G with G 0 = G 1 · ··· · G r , where each G i is a simple group of type A?, C?, D?, E6, or E7, we construct a differential equation over C(x) having Galois group G.  相似文献   

16.
17.
Emerson de Melo 《代数通讯》2013,41(11):4797-4808
Let M = FH be a finite group that is a product of a normal abelian subgroup F and an abelian subgroup H. Assume that all elements in M?F have prime order p, and F has at most one subgroup of order p. Examples of such groups are dihedral groups for p = 2 and the semidirect product of a cyclic group F by a group H of prime order p such that C F (H) = 1 or |C F (H)| =p and C F/C F (H)(H) = 1. Suppose that M acts on a finite group G in such a manner that C G (F) = 1. We prove that the Fitting height h(G) of G is at most h(C G (H))+ 1. Moreover, the Fitting series of C G (H) coincides with the intersection of C G (H) with the Fitting series of G.  相似文献   

18.
Lixin Mao 《代数通讯》2013,41(2):708-731
A ring R is called left P-coherent in case each principal left ideal of R is finitely presented. A left R-module M (resp. right R-module N) is called D-injective (resp. D-flat) if Ext1(G, M) = 0 (resp. Tor1(N, G) = 0) for every divisible left R-module G. It is shown that every left R-module over a left P-coherent ring R has a divisible cover; a left R-module M is D-injective if and only if M is the kernel of a divisible precover A → B with A injective; a finitely presented right R-module L over a left P-coherent ring R is D-flat if and only if L is the cokernel of a torsionfree preenvelope K → F with F flat. We also study the divisible and torsionfree dimensions of modules and rings. As applications, some new characterizations of von Neumann regular rings and PP rings are given.  相似文献   

19.
Let (R, 𝔪) be a commutative, noetherian, local ring, E the injective hull of the residue field R/𝔪, and M ○○ = Hom R (Hom R (M, E), E) the bidual of an R-module M. We investigate the elements of Ass(M ○○) as well as those of Coatt(M) = {𝔭 ∈ Spec(R)|𝔭 = Ann R (Ann M (𝔭))} and provide criteria for equality in one of the two inclusions Ass(M) ? Ass(M ○○) ? Coatt(M). If R is a Nagata ring and M a minimax module, i.e., an extension of a finitely generated R-module by an artinian R-module, we show that Ass(M ○○) = Ass(M) ∪ {𝔭 ∈ Coatt(M)| R/𝔭 is incomplete}.  相似文献   

20.
This paper is devoted to proving the following result: Let M be an irreducible regular algebraic monoid with unit group G. Then the center of M is unit regular and coincides with the closure of the center of G. Moreover if the M is reductive, then its center also coincides with the intersection of all maximal diagonizable submonoids of M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号