首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《代数通讯》2013,41(9):3225-3238
ABSTRACT

A cover for a group G is a collection of proper subgroups whose union is the whole group G. A cover is irredundant if no proper sub-collection is also a cover, and is called maximal if all its members are maximal subgroups. For an integer n > 2, a cover with n members is called an n-cover. Also, we denote σ (G) = n if G has an n-cover and does not have any m-cover for each integer m < n. In this article, we completely characterize groups with a maximal irredundant 6-cover with core-free intersection. As an application of this result, we characterize the groups G with σ (G) = 6. The intersection of an irredundant n-cover is known to have index bounded by a function of n, though in general the precise bound is not known. We also prove that the exact bound is 36 when n is 6.  相似文献   

2.
Baer and Wielandt in 1934 and 1958, respectively, considered that the intersection of the normalizers of all subgroups of G and the intersection of the normalizers of all subnormal subgroups of G. In this article, for a finite group G, we define the subgroup S(G) to be intersection of the normalizers of all non-cyclic subgroups of G. Groups whose noncyclic subgroups are normal are studied in this article, as well as groups in which all noncyclic subgroups are normalized by all minimal subgroups. In particular, we extend the results of Passman, Bozikov, and Janko to non-nilpotent finite groups.  相似文献   

3.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

4.
Wei Zhou  Zeyong Duan 《代数通讯》2013,41(12):4453-4457
Let H be a subgroup of a group G. We say that H satisfies the power condition with respect to G, or H is a power subgroup of G, if there exists a non-negative integer m such that H = G m  = 〈 g m |g ? G 〉. In this note, the following theorem is proved: Let G be a group and k the number of nonpower subgroups of G. Then (1) k = 0 if and only if G is a cyclic group (theorem of F. Szász); (2) 0 < k < ∞ if and only if G is a finite noncyclic group; (3) k = ∞ if and only if G is a infinte noncyclic group. Thus we get a new criterion for the finite noncyclic groups.  相似文献   

5.
Let G be a finite group. A PT-group is a group G whose subnormal subgroups are all permutable in G. A PST-group is a group G whose subnormal subgroups are all S-permutable in G. We say that G is a PTo-group (respectively, a PSTo-group) if its Frattini quotient group G/Φ(G) is a PT-group (respectively, a PST-group). In this paper, we determine the structure of minimal non-PTo-groups and minimal non-PSTo-groups.   相似文献   

6.
We prove here that a nonabelian finite p-group G has exactly one maximal subgroup with a noncyclic center if and only if Z(G) is cyclic and G has exactly one normal abelian subgroup of type (p, p).  相似文献   

7.
Manoj K. Yadav 《代数通讯》2013,41(12):4576-4592
We obtain certain results on a finite p-group whose central automorphisms are all class preserving. In particular, we prove that if G is a finite p-group whose central automorphisms are all class preserving, then d(G) is even, where d(G) denotes the number of elements in any minimal generating set for G. As an application of these results, we obtain some results regarding finite p-groups whose automorphisms are all class preserving.  相似文献   

8.
We prove that a finite group G occurs as a maximal proper subsemigroup of an infinite semigroup (in the terminology of Freese, Ježek, and Nation, G is a big semigroup) if and only if |G| ≥ 3. In fact, any finite semigroup whose minimal ideal contains a subgroup with at least three elements is big.  相似文献   

9.
Given a finite group G, write ψ(G) to denote the sum of the orders of the elements of G. Our main result is that if C is a cyclic group and G is a noncyclic group of the same order, then ψ(G) < ψ(C).  相似文献   

10.
Abstract

Let λ(G) be the maximum number of subgroups in an irredundant covering of the finite group G. We prove that if G is a group with λ(G) ≤ 6, then G is supersolvable. We also describe the structure of groups G with λ(G) = 6. Moreover, we show that if G is a group with λ(G)?<?31, then G is solvable.  相似文献   

11.
Baer characterized capable finite abelian groups (a group is capable if it is isomorphic to the group of inner automorphisms of some group) by a condition on the size of the factors in the invariant factor decomposition (the group must be noncyclic and the top two invariant factors must be equal). We provide a different characterization, given in terms of a condition on the lattice of subgroups. Namely, a finite abelian group G is capable if and only if there exists a family {H i } of subgroups of G with trivial intersection, such that the union generates G and all quotients G/H i have the same exponent. Other variations of this condition are also provided (for instance, the condition that the union generates G can be replaced by the condition that it is equal to G). The work presented here is partially supported by NSF/DMS-0805932.  相似文献   

12.
First, we prove two finite algebras are categorically equivalent if and only if the matrix products of their irredundant non-refinable covers are isomorphic. Second, we characterize families of irreducible algebras such that there exists an algebra whose neighbourhoods in an irredundant non-refinable cover are isomorphic to the respective irreducible algebra in the given family. Finally, we exhibit two facts by constructing examples. The first one is that there is a family of irreducible algebras such that there are many algebraic structures whose neighbourhoods in an irredundant non-refinable cover are isomorphic to the respective irreducible algebra in the given family. The second example is an algebra such that the matrix product of an irredundant non-refinable cover is bigger than the given algebra.  相似文献   

13.
Hempel has shown that the fundamental groups of knot complements are residually finite. This implies that every nontrivial knot must have a finite-sheeted, noncyclic cover. We give an explicit bound, Φ (c), such that if K is a nontrivial knot in the three-sphere with a diagram with c crossings then the complement of K has a finite-sheeted, noncyclic cover with at most Φ (c) sheets.The author is supported by an NSF Postdoctoral Fellowship at Cornell University.  相似文献   

14.
A simple graph H is a cover of a graph G if there exists a mapping φ from H onto G such that φ maps the neighbors of every vertex υ in H bijectively to the neighbors of φ (υ) in G . Negami conjectured in 1986 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. The conjecture is still open. It follows from the results of Archdeacon, Fellows, Negami, and the first author that the conjecture holds as long as the graph K 1,2,2,2 has no finite planar cover. However, those results seem to say little about counterexamples if the conjecture was not true. We show that there are, up to obvious constructions, at most 16 possible counterexamples to Negami's conjecture. Moreover, we exhibit a finite list of sets of graphs such that the set of excluded minors for the property of having finite planar cover is one of the sets in our list. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 183–206, 2004  相似文献   

15.
A subgroup H of finite group G is called pronormal in G if for every element x of G, H is conjugate to H x in 〈H, H x 〉. A finite group G is called PRN-group if every cyclic subgroup of G of prime order or order 4 is pronormal in G. In this paper, we find all PRN-groups and classify minimal non-PRN-groups (non-PRN-group all of whose proper subgroups are PRN-groups). At the end of the paper, we also classify the finite group G, all of whose second maximal subgroups are PRN-groups.  相似文献   

16.
Jiakuan Lu  Wei Meng 《代数通讯》2013,41(5):1752-1756
For a finite group G, let v(G) denote the number of conjugacy classes of non-normal subgroups of G and vc(G) denote the number of conjugacy classes of non-normal noncyclic subgroups of G. In this paper, we show that every finite group G satisfying v(G) ≤2|π(G)| or vc(G) ≤ |π(G)| is solvable, and for a finite nonsolvable group G, v(G) = 2|π(G)| +1 if and only if G ? A 5.  相似文献   

17.
Martin Hertweck 《代数通讯》2013,41(9):3224-3229
It is shown that in the units of augmentation one of an integral group ring ? G of a finite group G, a noncyclic subgroup of order p 2, for some odd prime p, exists only if such a subgroup exists in G. The corresponding statement for p = 2 holds by the Brauer–Suzuki theorem, as recently observed by Kimmerle.  相似文献   

18.
In a graph G, a set X is called a stable set if any two vertices of X are nonadjacent. A set X is called a dominating set if every vertex of V – X is joined to at least one vertex of X. A set X is called an irredundant set if every vertex of X, not isolated in X, has at least one proper neighbor, that is a vertex of V – X joined to it but to no other vertex of X. Let α′ and α, γ, and Γ, ir and IR, denote respectively the minimum and maximum cardinalities of a maximal stable set, a minimal dominating set, and a maximal irredundant set. It is known that ir ? γ ? α′ ? α ? Γ ? IR and that if G does not contain any induced subgraph isomorphic to K1,3, then γ = α′. Here we prove that if G contains no induced subgraph isomorphic to K1,3 or to the graph H of figure 1, then ir = γ = α′. We prove also that if G contains no induced subgraph isomorphic to K1,3, to H, or to the graph h of figure 3, then Γ = IR. Finally, we improve a result of Bollobas and Cockayne about sufficient conditions for γ = ir in terms of forbidden subgraphs.  相似文献   

19.
A subgroup H of a finite group G is said to be permutable in G if it permutes with every subgroup of G. In this paper, we determine the finite groups which have a permutable subgroup of prime order and whose maximal subgroups are totally (generalized) smooth groups.  相似文献   

20.
In this note we consider finite noncyclic p-groups G all of whose maximal cyclic subgroups X satisfy one of the following two properties. (a) If each subgroup H of G containing X properly is nonabelian, then p = 2 and G is generalized quaternion. (b) If X is contained in exactly one maximal subgroup of G, then G is metacyclic. This solves the problems Nr.1541 and Nr. 1594 from [1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号