首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
2.
3.
M. Ebrahimpour 《代数通讯》2013,41(4):1268-1279
Let R be a commutative ring with identity. Let φ: S(R) → S(R) ∪ {?} be a function, where S(R) is the set of ideals of R. Suppose n ≥ 2 is a positive integer. A nonzero proper ideal I of R is called (n ? 1, n) ? φ-prime if, whenever a 1, a 2, ?, a n  ∈ R and a 1 a 2?a n  ∈ I?φ(I), the product of (n ? 1) of the a i 's is in I. In this article, we study (n ? 1, n) ? φ-prime ideals (n ≥ 2). A number of results concerning (n ? 1, n) ? φ-prime ideals and examples of (n ? 1, n) ? φ-prime ideals are also given. Finally, rings with the property that for some φ, every proper ideal is (n ? 1, n) ? φ-prime, are characterized.  相似文献   

4.
Gyu Whan Chang 《代数通讯》2013,41(7):2650-2664
Let D be an integral domain, S be a (saturated) multiplicative subset of D such that D ? D S , Γ be a numerical semigroup with Γ ? ?0, Γ* = Γ?{0}, X be an indeterminate over D, D + XD S [X] = {a + Xg ∈ D S [X]∣a ∈ D and g ∈ D S [X]}, and D + D S [Γ*] = {a + f ∈ D S [Γ]∣a ∈ D and f ∈ D S [Γ*]}; so D + D S [Γ*] ? D + XD S [X]. In this article, we study when D + D S [Γ*] is an APvMD, an AGCD-domain, an AS-domain, an AP-domain, or an AB-domain.  相似文献   

5.
Let R be a commutative ring with identity. Various generalizations of prime ideals have been studied. For example, a proper ideal I of R is weakly prime (resp., almost prime) if a, b ∈ R with ab ∈ I ? {0} (resp., ab ∈ I ? I 2) implies a ∈ I or b ∈ I. Let φ:?(R) → ?(R) ∪ {?} be a function where ?(R) is the set of ideals of R. We call a proper ideal I of R a φ-prime ideal if a, b ∈ R with ab ∈ I ? φ(I) implies a ∈ I or b ∈ I. So taking φ?(J) = ? (resp., φ0(J) = 0, φ2(J) = J 2), a φ?-prime ideal (resp., φ0-prime ideal, φ2-prime ideal) is a prime ideal (resp., weakly prime ideal, almost prime ideal). We show that φ-prime ideals enjoy analogs of many of the properties of prime ideals.  相似文献   

6.
Abstract

Since the circulation, in 1974, of the first draft of “The construction D + XD S [X], J. Algebra 53 (1978), 423–439” a number of variations of this construction have appeared. Some of these are: The generalized D + M construction, the A + (X)B[X] construction, with X a single variable or a set of variables, and the D + I construction (with I not necessarily prime). These constructions have proved their worth not only in providing numerous examples and counter examples in commutative ring theory, but also in providing statements that often turn out to be forerunners of results on general pullbacks. The aim of this paper will be to discuss these constructions and the remarkable uses they have been put to. I will concentrate more on the A + XB[X] construction, its basic properties and examples arising from it.  相似文献   

7.
ABSTRACT

Let R be a commutative ring with nonzero identity and let I be an ideal of R. The zero-divisor graph of R with respect to I, denoted by Γ I (R), is the graph whose vertices are the set {x ? R\I | xy ? I for some y ? R\I} with distinct vertices x and y adjacent if and only if xy ? I. In the case I = 0, Γ0(R), denoted by Γ(R), is the zero-divisor graph which has well known results in the literature. In this article we explore the relationship between Γ I (R) ? Γ J (S) and Γ(R/I) ? Γ(S/J). We also discuss when Γ I (R) is bipartite. Finally we give some results on the subgraphs and the parameters of Γ I (R).  相似文献   

8.
Huanyin Chen 《代数通讯》2013,41(10):3790-3804
An element of a ring is called strongly J-clean provided that it can be written as the sum of an idempotent and an element in its Jacobson radical that commute. A ring is strongly J-clean in case each of its elements is strongly J-clean. We investigate, in this article, strongly J-clean rings and ultimately deduce strong J-cleanness of T n (R) for a large class of local rings R. Further, we prove that the ring of all 2 × 2 matrices over commutative local rings is not strongly J-clean. For local rings, we get criteria on strong J-cleanness of 2 × 2 matrices in terms of similarity of matrices. The strong J-cleanness of a 2 × 2 matrix over commutative local rings is completely characterized by means of a quadratic equation.  相似文献   

9.
Andreas Reinhart 《代数通讯》2013,41(10):4243-4251
Let S be a commutative ring with identity and R a unitary subring of S. An ideal I of S is called an R-conductor ideal of S if I = {x ∈ S | xS ? V} for some intermediate ring V of R and S. In this note, we present necessary and sufficient criteria for being an R-conductor ideal of S. We generalize several well known facts about them and present a simple approach to rediscover the results of both old and recent articles. We sketch the boundaries of our criteria by providing a few counterexamples.  相似文献   

10.
J. Azami  B. Vakili 《代数通讯》2013,41(12):4500-4508
Let R be a commutative Noetherian ring, K a nonzero finitely generated suitable R-module, and I an ideal of R. It is shown that if (R, ) is local, then  is G K -perfect if and only if K is a canonical module for R. Furthermore, if I is integrally closed and G K  ? dim R I < ∞, then K is a canonical R -module for every  ? Ass R R/I whenever K satisfies Serre's condition (S 1) or grade K I > 0. Finally, it is shown that if CM ? dim R I < ∞, then R is Cohen–Macaulay for every  ? Ass R R/I.  相似文献   

11.
Let R be a ring with unity. The inclusion ideal graph of a ring R, denoted by In(R), is a graph whose vertices are all nontrivial left ideals of R and two distinct left ideals I and J are adjacent if and only if I ? J or J ? I. In this paper, we show that In(R) is not connected if and only if R ? M 2(D) or D 1 × D 2, for some division rings, D, D 1 and D 2. Moreover, we prove that if In(R) is connected, then diam(In(R)) ≤3. It is shown that if In(R) is a tree, then In(R) is a caterpillar with diam(In(R)) ≤3. Also, we prove that the girth of In(R) belongs to the set {3, 6, ∞}. Finally, we determine the clique number and the chromatic number of the inclusion ideal graph for some classes of rings.  相似文献   

12.
A (commutative unital) ring R is said to satisfy universal lying-over (ULO) if each injective ring homomorphism R → T satisfies the lying-over property. If R satisfies ULO, then R = tq(R), the total quotient ring of R. If a reduced ring satisfies ULO, it also satisfies Property A. If a ring R = tq(R) satisfies Property A and each nonminimal prime ideal of R is an intersection of maximal ideals, R satisfies ULO. If 0 ≤ n ≤ ∞, there exists a reduced (resp., nonreduced) n-dimensional ring satisfying ULO. The A + B construction is used to show that if 2 ≤ n < ∞, there exists an n-dimensional reduced ring R such that R = tq(R), R satisfies Property A, but R does not satisfy ULO.  相似文献   

13.
《代数通讯》2013,41(7):3529-3546
Abstract

For an ideal I of a Noetherian local ring (R, m ) we consider properties of I and its powers as reflected in the fiber cone F(I) of I. In particular,we examine behavior of the fiber cone under homomorphic image R → R/J = R′ as related to analytic spread and generators for the kernel of the induced map on fiber cones ψ J  : F R (I) → F R(IR′). We consider the structure of fiber cones F(I) for which ker ψ J  ≠ 0 for each nonzero ideal J of R. If dim F(I) = d > 0,μ(I) = d + 1 and there exists a minimal reduction J of I generated by a regular sequence,we prove that if grade(G +(I)) ≥ d ? 1,then F(I) is Cohen-Macaulay and thus a hypersurface.  相似文献   

14.
The object of this article is to study the regularity properties of elements of a ring with respect to a given ideal I. As expected, several concepts that are equivalent in the case of I = R turn out to be distinct for a general ideal I and we consider the relations between these properties. In particular, we replace the set of units U(R) of the ring R by the set U I (R) = {u|uI = Iu = I} and use these “relative units” to obtain generalizations of notions such as stable range and unit-regularity. We also see that on assuming the set of “relative units” to have no zero divisors, we can obtain several interesting results.  相似文献   

15.
M. Ebrahimpour 《代数通讯》2013,41(9):3861-3875
Let R be a commutative ring with identity. We say that a proper ideal P of R is (n ? 1, n)-weakly prime (n ≥ 2) if 0 ≠ a 1a n  ∈ P implies a 1a i?1 a i+1a n  ∈ P for some i ∈ {1,…, n}, where a 1,…, a n  ∈ R. In this article, we study (n ? 1, n)-weakly prime ideals. A number of results concerning (n ? 1, n)-weakly prime ideals and examples of (n ? 1, n)-weakly prime ideals are given. Rings with the property that for a positive integer n such that 2 ≤ n ≤ 5, every proper ideal is (n ? 1, n)-weakly prime are characterized. Moreover, it is shown that in some rings, nonzero (n ? 1, n)-weakly prime ideals and (n ? 1, n)-prime ideals coincide.  相似文献   

16.
Let R be a commutative ring with nonzero identity and Z(R) its set of zero-divisors. The zero-divisor graph of R is Γ(R), with vertices Z(R)?{0} and distinct vertices x and y are adjacent if and only if xy = 0. For a proper ideal I of R, the ideal-based zero-divisor graph of R is Γ I (R), with vertices {x ∈ R?I | xy ∈ I for some y ∈ R?I} and distinct vertices x and y are adjacent if and only if xy ∈ I. In this article, we study the relationship between the two graphs Γ(R) and Γ I (R). We also determine when Γ I (R) is either a complete graph or a complete bipartite graph and investigate when Γ I (R) ? Γ(S) for some commutative ring S.  相似文献   

17.
For a commutative ring R with identity, an ideal-based zero-divisor graph, denoted by Γ I (R), is the graph whose vertices are {x ∈ R?I | xy ∈ I for some y ∈ R?I}, and two distinct vertices x and y are adjacent if and only if xy ∈ I. In this article, we investigate an annihilator ideal-based zero-divisor graph by replacing the ideal I with the annihilator ideal Ann(M) for a multiplication R-module M. Based on the above-mentioned definition, we examine some properties of an R-module over a von Neumann regular ring, and the cardinality of an R-module associated with Γ Ann(M)(R).  相似文献   

18.
In this paper we study right S-Noetherian rings and modules, extending notions introduced by Anderson and Dumitrescu in commutative algebra to noncommutative rings. Two characterizations of right S-Noetherian rings are given in terms of completely prime right ideals and point annihilator sets. We also prove an existence result for completely prime point annihilators of certain S-Noetherian modules with the following consequence in commutative algebra: If a module M over a commutative ring is S-Noetherian with respect to a multiplicative set S that contains no zero-divisors for M, then M has an associated prime.  相似文献   

19.
Satoshi Ohnishi 《代数通讯》2013,41(5):1563-1576
In a commutative Noetherian ring R, the coefficient ideal of I relative to J is the largest ideal 𝔟 for which I𝔟 =J𝔟 when I is integral over J. In this article, we will give a simple algorithm to compute 𝔞(I, J) when I, J are ideals in a polynomial ring R = k[X 1,…, X d ] generated by monomials and J is a parameter ideal. We use the concept of socle sequence. Also we will show that the reduction number r J (I) is also computed by our algorithm.  相似文献   

20.
We call a ring R a right SA-ring if for any ideals I and J of R there is an ideal K of R such that r(I) + r(J) = r(K). This class of rings is exactly the class of rings for which the lattice of right annihilator ideals is a sublattice of the lattice of ideals. The class of right SA-rings includes all quasi-Baer (hence all Baer) rings and all right IN-rings (hence all right selfinjective rings). This class is closed under direct products, full and upper triangular matrix rings, certain polynomial rings, and two-sided rings of quotients. The right SA-ring property is a Morita invariant. For a semiprime ring R, it is shown that R is a right SA-ring if and only if R is a quasi-Baer ring if and only if r(I) + r(J) = r(IJ) for all ideals I and J of R if and only if Spec(R) is extremally disconnected. Examples are provided to illustrate and delimit our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号