首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Paolo Zanardo 《代数通讯》2015,43(1):158-173
Let R be a commutative ring and A be an R-module. The Mal'cev rank μ(A) of A is the sup of genN, where N ranges over the finitely generated submodules of A, and genN is the minimum number of generators of N. We prove that μ is both sub-additive and pre-additive as an invariant of Mod(R). Our main goal is to investigate μ for modules over pseudo-valuation domains. Specifically, we establish which pseudo-valuation domains R satisfy the property that an R-module of finite Mal'cev rank must be finitely generated. We split the class 𝒞 of pseudo-valuation domains as a union 𝒞 = 𝒞1 ∪ 𝒞2 ∪ 𝒞3 ∪ 𝒞4 of suitably defined subclasses, and prove that the property holds if and only if R ∈ 𝒞3 ∪ 𝒞4. In that case we can describe the R-modules A where μ(A) < ∞. We also show that, for R ∈ 𝒞4, there exist indecomposable R-modules of arbitrarily large finite Mal'cev rank.  相似文献   

2.
Sh. Asgari  M. R. Vedadi 《代数通讯》2013,41(5):1801-1816
We carry out an extensive study of modules M R with the property that M/f(M) is singular for all injective endomorphisms f of M. Such modules called “quasi co-Hopfian”, generalize co-Hopfian modules. It is shown that a ring R is semisimple if and only if every quasi co-Hopfian R-module is co-Hopfian. Every module contains a unique largest fully invariant quasi co-Hopfian submodule. This submodule is determined for some modules including the semisimple ones. Over right nonsingular rings several equivalent conditions to being quasi co-Hopfian are given. Modules with all submodules quasi co-Hopfian are called “completely quasi co-Hopfian” (cqcH). Over right nonsingular rings and over certain right Noetherian rings, it is proved that every finite reduced rank module is cqcH. For a right nonsingular ring which is right semi-Artinian (resp. right FBN) the class of cqcH modules is the same as the class of finite reduced rank modules if and only if there are only finitely many isomorphism classes of nonsingular R-modules which are simple (resp. indecomposable injective).  相似文献   

3.
We define and investigate t-semisimple modules as a generalization of semisimple modules. A module M is called t-semisimple if every submodule N contains a direct summand K of M such that K is t-essential in N. T-semisimple modules are Morita invariant and they form a strict subclass of t-extending modules. Many equivalent conditions for a module M to be t-semisimple are found. Accordingly, M is t-semisiple, if and only if, M = Z 2(M) ⊕ S(M) (where Z 2(M) is the Goldie torsion submodule and S(M) is the sum of nonsingular simple submodules). A ring R is called right t-semisimple if R R is t-semisimple. Various characterizations of right t-semisimple rings are given. For some types of rings, conditions equivalent to being t-semisimple are found, and this property is investigated in terms of chain conditions.  相似文献   

4.
An R-module M is called strongly duo if Tr(N, M) = N for every N ≤ M R . Several equivalent conditions to being strongly duo are given. If M R is strongly duo and reduced, then End R (M) is a strongly regular ring and the converse is true when R is a Dedekind domain and M R is torsion. Over certain rings, nonsingular strongly duo modules are precisely regular duo modules. If R is a Dedekind domain, then M R is strongly duo if and only if either MR or M R is torsion and duo. Over a commutative ring, strongly duo modules are precisely pq-injective duo modules and every projective strongly duo module is a multiplication module. A ring R is called right strongly duo if R R is strongly duo. Strongly regular rings are precisely reduced (right) strongly duo rings. A ring R is Noetherian and all of its factor rings are right strongly duo if and only if R is a serial Artinian right duo ring.  相似文献   

5.
《代数通讯》2013,41(11):4285-4301
Abstract

Let M be a left R-module and F a submodule of M for any ring R. We call M F-semiregular if for every x ∈ M, there exists a decomposition M = A ⊕ B such that A is projective, A ≤ Rx and Rx ∩ B ≤ F. This definition extends several notions in the literature. We investigate some equivalent conditions to F-semiregular modules and consider some certain fully invariant submodules such as Z(M), Soc(M), δ(M). We prove, among others, that if M is a finitely generated projective module, then M is quasi-injective if and only if M is Z(M)-semiregular and M ⊕ M is CS. If M is projective Soc(M)-semiregular module, then M is semiregular. We also characterize QF-rings R with J(R)2 = 0.  相似文献   

6.
We characterize right Noetherian rings over which all simple modules are almost injective. It is proved that R is such a ring, if and only if, the complements of semisimple submodules of every R-module M are direct summands of M, if and only if, R is a finite direct sum of right ideals Ir, where Ir is either a Noetherian V-module with zero socle, or a simple module, or an injective module of length 2. A commutative Noetherian ring for which all simple modules are almost injective is precisely a finite direct product of rings Ri, where Ri is either a field or a quasi-Frobenius ring of length 2. We show that for commutative rings whose all simple modules are almost injective, the properties of Kasch, (semi)perfect, semilocal, quasi-Frobenius, Artinian, and Noetherian coincide.  相似文献   

7.
A right R-module M is called simple-direct-injective if, whenever, A and B are simple submodules of M with A?B, and B?M, then A?M. Dually, M is called simple-direct-projective if, whenever, A and B are submodules of M with MA?B?M and B simple, then A?M. In this paper, we continue our investigation of these classes of modules strengthening many of the established results on the subject. For example, we show that a ring R is uniserial (artinian serial) with J2(R) = 0 iff every simple-direct-projective right R-module is an SSP-module (SIP-module) iff every simple-direct-injective right R-module is an SIP-module (SSP-module).  相似文献   

8.
In this note we give a simple proof of the following result: Let R be a commutative Noetherian ring,  an ideal of R and M a finite R-module, if H i (M) has finite support for all i < n, then Ass(H n (M)) is finite.  相似文献   

9.
In this paper, we introduce and study the dual notion of simple-direct-injective modules. Namely, a right R-module M is called simple-direct-projective if, whenever A and B are submodules of M with B simple and M/A ? B ?M, then A ?M. Several characterizations of simple-direct-projective modules are provided and used to describe some well-known classes of rings. For example, it is shown that a ring R is artinian and serial with J2(R) = 0 if and only if every simple-direct-projective right R-module is quasi-projective if and only if every simple-direct-projective right R -module is a D3-module. It is also shown that a ring R is uniserial with J2(R) = 0 if and only if every simple-direct-projective right R-module is a C3-module if and only if every simple-direct-injective right R -module is a D3-module.  相似文献   

10.
A right R-module M is called co-Hopfian if injective endomorphisms of M R are surjective. It is shown that E(M R ) is co-Hopfian if and only if M R does not contain an infinite direct sum ?i ? \mathbbNWi{{\oplus_{i \in \mathbb{N}}W_{i}}} of submodules such that each W i+1 essentially embeds in W i . For many modules M R , including modules over a right FBN or right duo ring with Krull dimension, it is proved that E(M R ) is co-Hopfian if and only if (\mathbbN){(\mathbb{N})} ↪̸ M R for every non-zero X R . For a ring which has enough uniforms, the class of modules with co-Hopfian injective envelope is the same as the class of modules with finite uniform dimension if and only if there are only finitely many isomorphism classes of indecomposable injective modules.  相似文献   

11.
Using the concept of prime submodule for M ∈ R-Mod, P ∈ Spec(M), and N ∈ σ[M], we define when N is P-Mtame \ (Mtame) module. This concept generalizes the concept\ of P-tame (tame) modules. For M ∈ R-Mod and τ ∈M-tors, we use the concept of τ M -Gabriel dimension and we study the relationship between Mtame modules and τ M -Gabriel dimension. We find equivalent conditions for a module M progenerator in σ[M] with τ M -Gabriel dimension to have τ M -Gabriel correspondence in terms of the P-Mtame modules. This result extends the results by Albu et al. and Kim and Krause.  相似文献   

12.
13.
《代数通讯》2013,41(10):4649-4676
ABSTRACT

For a left R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we investigate conditions on the module M which imply that there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules and “prime M-ideals”.  相似文献   

14.
Let (R, 𝔪) be a commutative, noetherian, local ring, E the injective hull of the residue field R/𝔪, and M ○○ = Hom R (Hom R (M, E), E) the bidual of an R-module M. We investigate the elements of Ass(M ○○) as well as those of Coatt(M) = {𝔭 ∈ Spec(R)|𝔭 = Ann R (Ann M (𝔭))} and provide criteria for equality in one of the two inclusions Ass(M) ? Ass(M ○○) ? Coatt(M). If R is a Nagata ring and M a minimax module, i.e., an extension of a finitely generated R-module by an artinian R-module, we show that Ass(M ○○) = Ass(M) ∪ {𝔭 ∈ Coatt(M)| R/𝔭 is incomplete}.  相似文献   

15.
A ring is of finite type if it has only finitely many maximal right ideals, all two-sided. In this article, we give a complete set of invariants for finite direct sums of cyclically presented modules over a ring R of finite type. More generally, our results apply to finite direct sums of direct summands of cyclically presented right R-modules (DCP modules). Using a duality, we obtain as an application a similar set of invariants for kernels of morphisms between finite direct sums of pair-wise non-isomorphic indecomposable injective modules over an arbitrary ring. This application motivates the study of DCP modules.  相似文献   

16.
Utumi modules     
A right R-module M is called a U-module if, whenever A and B are submodules of M with A?B and AB = 0, there exist two summands K and L of M such that A?essK, B?essL and KL?M. The class of U-modules is a simultaneous and strict generalization of three fundamental classes of modules; namely, the quasi-continuous, the square-free, and the automorphism-invariant modules. In this paper we show that the class of U-modules inherits some of the important features of the aforementioned classes of modules. For example, a U-module M is clean if and only if it has the finite exchange property, if and only if it has the full exchange property. As an immediate consequence, every strongly clean U-module has the substitution property and hence is Dedekind-finite. In particular, the endomorphism ring of a strongly clean U-module has stable range 1.  相似文献   

17.
18.
19.
Sh. Asgari 《代数通讯》2018,46(3):1277-1286
An interesting result, obtaining by some theorems of Asano, Köthe and Warfield, states that: “for a commutative ring R, every module is a direct sum of uniform modules if and only if R is an Artinian principal ideal ring.” Moreover, it is observed that: “every ideal of a commutative ring R is a direct sum of uniform modules if and only if R is a finite direct product of uniform rings.” These results raise a natural question: “What is the structure of commutative rings whose all proper ideals are direct sums of uniform modules?” The goal of this paper is to answer this question. We prove that for a commutative ring R, every proper ideal is a direct sum of uniform modules, if and only if, R is a finite direct product of uniform rings or R is a local ring with the unique maximal ideal ? of the form ? = US, where U is a uniform module and S is a semisimple module. Furthermore, we determine the structure of commutative rings R for which every proper ideal is a direct sum of cyclic uniform modules (resp., cocyclic modules). Examples which delineate the structures are provided.  相似文献   

20.
Hongbo Zhang 《代数通讯》2013,41(4):1420-1427
An element of a ring R is called “strongly clean” if it is the sum of an idempotent and a unit that commute, and R is called “strongly clean” if every element of R is strongly clean. A module M is called “strongly clean” if its endomorphism ring End(M) is a strongly clean ring. In this article, strongly clean modules are characterized by direct sum decompositions, that is, M is a strongly clean module if and only if whenever M′⊕ B = A 1A 2 with M′? M, there are decompositions M′ = M 1M 2, B = B 1B 2, and A i  = C i D i (i = 1,2) such that M 1B 1 = C 1D 2 = M 1C 1 and M 2B 2 = D 1C 2 = M 2C 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号