首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the Newton Interior-Point Method for Nonlinear Programming Problems   总被引:2,自引:0,他引:2  
Interior-point methods have been developed largely for nonlinear programming problems. In this paper, we generalize the global Newton interior-point method introduced in Ref. 1 and we establish a global convergence theory for it, under the same assumptions as those stated in Ref. 1. The generalized algorithm gives the possibility of choosing different descent directions for a merit function so that difficulties due to small steplength for the perturbed Newton direction can be avoided. The particular choice of the perturbation enables us to interpret the generalized method as an inexact Newton method. Also, we suggest a more general criterion for backtracking, which is useful when the perturbed Newton system is not solved exactly. We include numerical experimentation on discrete optimal control problems.  相似文献   

2.
Interior-point methods for nonlinear complementarity problems   总被引:1,自引:0,他引:1  
We present a potential reduction interior-point algorithm for monotone nonlinear complementarity problems. At each iteration, one has to compute an approximate solution of a nonlinear system such that a certain accuracy requirement is satisfied. For problems satisfying a scaled Lipschitz condition, this requirement is satisfied by the approximate solution obtained by applying one Newton step to that nonlinear system. We discuss the global and local convergence rates of the algorithm, convergence toward a maximal complementarity solution, a criterion for switching from the interior-point algorithm to a pure Newton method, and the complexity of the resulting hybrid algorithm.This research was supported in part by NSF Grant DDM-89-22636.The authors would like to thank Rongqin Sheng and three anonymous referees for their comments leading to a better presentation of the results.  相似文献   

3.
In this paper, we develop an hp‐adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction‐type adaptive Newton method and an hp‐version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hp‐adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a convergence analysis of an adaptive choice of the sequence of damping parameters in the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed operator equations is presented. The selection criterion is motivated from the damping parameter choice criteria, which are used for the efficient solution of nonlinear least-square problems. The performance of this selection criterion is tested for the solution of nonlinear ill-posed model problems.  相似文献   

5.
We consider balanced truncation model order reduction for symmetric second-order systems. The occurring large-scale generalized and structured Lyapunov equations are solved with a specially adapted low-rank alternating directions implicit (ADI) type method. Stopping criteria for this iteration are investigated, and a new result concerning the Lyapunov residual within the low-rank ADI method is established. We also propose a goal-oriented stopping criterion which tries to incorporate the balanced truncation approach already during the ADI iteration. The model reduction approach using the ADI method with different stopping criteria is evaluated on several test systems.  相似文献   

6.
In this paper, the error estimation and adaptive strategy developed for the linear elastodynamic problem under transient dynamic loading based on the Z–Z criterion is utilized for 2D and plate bending problems. An automatic mesh generator based on “growth meshing” is utilized effectively for adaptive mesh refinement. Optimal meshes are obtained iteratively corresponding to the prescribed domain discretization error limit and for a chosen number of basis modes satisfying modal truncation errors. Numerous examples show the effectiveness of the integrated approach in achieving the target accuracy in finite element transient dynamic analysis.  相似文献   

7.
In this paper, we derive two general adaptive methods with memory in the class of Newton‐type methods by modifying and introducing one and two self accelerators over a variant of Ostrowski's method. The idea of introducing adaptive self‐accelerator (via all the old information for Newton‐type methods) is new and efficient in order to obtain a higher high efficiency index. Finally, we provide convergence analysis and numerical implementations to show the feasibility and applicability of the proposed methods.  相似文献   

8.
The traditional Newton method for solving nonlinear operator equations in Banach spaces is discussed within the context of the continuous Newton method. This setting makes it possible to interpret the Newton method as a discrete dynamical system and thereby to cast it in the framework of an adaptive step size control procedure. In so doing, our goal is to reduce the chaotic behavior of the original method without losing its quadratic convergence property close to the roots. The performance of the modified scheme is illustrated with various examples from algebraic and differential equations.  相似文献   

9.
We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based on the quadratic model of the objective function is used to select the most promising between the two search directions. Both the latter selection rule and the CG stopping criterion for approximately solving Newton’s equation, strongly rely on conjugacy conditions. An appropriate linesearch technique is adopted for each search direction: a nonmonotone stabilization is used with the approximate Newton step, while an Armijo type linesearch is used for the negative curvature direction. The proposed algorithm is both globally and superlinearly convergent to stationary points satisfying second order necessary conditions. We carry out a significant numerical experience in order to test our proposal.  相似文献   

10.
This paper concerns the use of iterative solvers in interior-point methods for linear and quadratic programming problems. We state an adaptive termination rule for the inner iterative scheme and we prove the global convergence of the obtained algorithm, exploiting the theory developed for inexact Newton methods. This approach is promising for problems with special structure on parallel computers. We present an application on Cray T3E/256 and SGI Origin 2000/64 arising in stochastic linear programming and robust optimization, where the constraint matrix is block-angular and extremely large.  相似文献   

11.
The present paper is concerned with the convergence problem of inexact Newton methods. Assuming that the nonlinear operator satisfies the γ-condition, a convergence criterion for inexact Newton methods is established which includes Smale's type convergence criterion. The concept of an approximate zero for inexact Newton methods is proposed in this paper and the criterion for judging an initial point being an approximate zero is established. Consequently, Smale's α-theory is generalized to inexact Newton methods. Furthermore, a numerical example is presented to illustrate the applicability of our main results.  相似文献   

12.
We consider an interior point method in function space for PDE constrained optimal control problems with state constraints. Our emphasis is on the construction and analysis of an algorithm that integrates a Newton path-following method with adaptive grid refinement. This is done in the framework of inexact Newton methods in function space, where the discretization error of each Newton step is controlled by adaptive grid refinement in the innermost loop. This allows to perform most of the required Newton steps on coarse grids, such that the overall computational time is dominated by the last few steps. For this purpose we propose an a-posteriori error estimator for a problem suited norm.  相似文献   

13.
In this note, we show that a well-known integral method, which was used by Mayne and Polak to compute an -subgradient, can be exploited to compute deterministically an element of the plenary hull of the Clarke generalized Jacobian of a locally Lipschitz mapping regardless of its structure. In particular, we show that, when a locally Lipschitz mapping is piecewise smooth, we are able to compute deterministically an element of the Clarke generalized Jacobian by the adaptive smoothing method. Consequently, we show that the Newton method based on the plenary hull of the Clarke generalized Jacobian can be implemented in a deterministic way for solving Lipschitz nonsmooth equations.  相似文献   

14.
We extend the multiscale finite element viscosity method for hyperbolic conservation laws developed in terms of hierarchical finite element bases to a (pre‐orthogonal spline‐)wavelet basis. Depending on an appropriate error criterion, the multiscale framework allows for a controlled adaptive resolution of discontinuities of the solution. The nonlinearity in the weak form is treated by solving a least‐squares data fitting problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

15.
New modified open Newton Cotes integrators are introduced in this paper. For the new proposed integrators the connection between these new algorithms, differential methods and symplectic integrators is studied. Much research has been done on one step symplectic integrators and several of them have obtained based on symplectic geometry. However, the research on multistep symplectic integrators is very poor. Zhu et al. [1] studied the well known open Newton Cotes differential methods and they presented them as multilayer symplectic integrators. Chiou and Wu [2] studied the development of multistep symplectic integrators based on the open Newton Cotes integration methods. In this paper we introduce a new open modified numerical method of Newton Cotes type and we present it as symplectic multilayer structure. The new obtained symplectic schemes are applied for the solution of Hamilton’s equations of motion which are linear in position and momentum. An important remark is that the Hamiltonian energy of the system remains almost constant as integration proceeds. We have applied also efficiently the new proposed method to a nonlinear orbital problem and an almost periodic orbital problem.  相似文献   

16.
An efficient and reliable a posteriori error estimate is derived for solving three-dimensional static Maxwell's equations by using the edge elements of first family. Based on the a posteriori error estimates, an adaptive finite element method is constructed and its convergence is established. Compared with the existing results, an important advantage of the new theory lies in its feature that the usual marking of elements based on the oscillation is not needed in our adaptive algorithm, while the linear convergence of the algorithm can be still demonstrated in terms of the reduction of the energy-norm error and the oscillation. Numerical examples are provided which demonstrate the effectiveness and robustness of the adaptive methods.  相似文献   

17.
This paper addresses the development of a new algorithm forparameter estimation of ordinary differential equations. Here,we show that (1) the simultaneous approach combined with orthogonalcyclic reduction can be used to reduce the estimation problemto an optimization problem subject to a fixed number of equalityconstraints without the need for structural information to devisea stable embedding in the case of non-trivial dichotomy and(2) the Newton approximation of the Hessian information of theLagrangian function of the estimation problem should be usedin cases where hypothesized models are incorrect or only a limitedamount of sample data is available. A new algorithm is proposedwhich includes the use of the sequential quadratic programming(SQP) Gauss–Newton approximation but also encompassesthe SQP Newton approximation along with tests of when to usethis approximation. This composite approach relaxes the restrictionson the SQP Gauss–Newton approximation that the hypothesizedmodel should be correct and the sample data set large enough.This new algorithm has been tested on two standard problems.  相似文献   

18.
19.
In this paper, low-order Newton methods are proposed that make use of previously obtained second-derivative information by suitable preconditioning. When applied to a particular 2-dimensional Newton method (the LS method), it is shown that a member of the Broyden family of quasi-Newton methods is obtained. Algorithms based on this preconditioned LS model are tested against some variations of the BFGS method and shown to be much superior in terms of number of iterations and function evaluations, but not so effective in terms of number of gradient evaluations.  相似文献   

20.
We consider the problem of finding the nearest point (by Euclidean distance) in a simplicial cone to a given point, and develop an exterior penalty algorithm for it. Each iteration in the algorithm consists of a single Newton step following a reduction in the value of the penalty parameter. Proofs of convergence of the algorithm are given. Various other versions of exterior penalty algorithms for nearest point problems in nonsimplicial polyhedral cones and for convex quadratic programs, all based on a single descent step following a reduction in the value of the penalty parameter per iteration, are discussed. The performance of these algorithms in large scale computational experiments is very encouraging. It shows that the number of iterations grows very slowly, if at all, with the dimension of the problem.Partially supported by NSF Grant No. ECS-8521183, and by the two universities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号