首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riccati-Bernoulli辅助常微分方程方法可以用来构造非线性偏微分方程的行波解.利用行波变换,将非线性偏微分方程化为非线性常微分方程, 再利用Riccati-Bernoulli方程将非线性常微分方程化为非线性代数方程组, 求解非线性代数方程组就能直接得到非线性偏微分方程的行波解.对Davey-Stewartson方程应用这种方法, 得到了该方程的精确行波解.同时也得到了该方程的一个Backlund变换.所得结果与首次积分法的结果作了比较.Riccati-Bernoulli辅助常微分方程方法是一种简单、有效地求解非线性偏微分方程精确解的方法.  相似文献   

2.
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the nonlinear Schrödinger equation.  相似文献   

3.
In this paper, the first integral method is used to construct exact solutions of the Hamiltonian amplitude equation and coupled Higgs field equation. The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as to integrable ones.  相似文献   

4.
讨论了带有热源项的非线性扩散方程.通过一种直接简洁的方法得到了几种精确解.该方法可用于更高阶演化方程的求解问题.  相似文献   

5.
二维色散长波方程组的精确解   总被引:2,自引:0,他引:2  
利用齐次平衡法给出了二维色散长波方程组的定态解、孤立波解与非孤立波解等几种显式精确解。这个方法也可用来寻找其它非线性发展方程的不同类型的精确解。  相似文献   

6.
In this paper we employ a rational expansion to generalize Fan’s method for exact travelling wave solutions for nonlinear partial differential equations (PDEs). To verify the reliability of the proposed method, the generalized shallow water wave (GSWW) equation has been investigated as an example. Kinds of new exact travelling wave solutions of a rational form have been obtained. This indicates that the proposed method provides a more general result for exact solution of nonlinear equations.  相似文献   

7.
In this paper, we propose a modified generalized transformation for constructing analytic solutions to nonlinear differential equations. This improved unified ansätze is utilized to acquire exact solutions that are general solutions of simpler equations that are either integrable or possess special solutions. The ansätze is constructed via the choice of an integrable differential operator or a basis set of functions. The technique is implemented to obtain several families of exact solutions for a class of nonlinear evolution equations with nonlinear term of any order. In particular, the Klein–Gordon, the Sine–Gordon and Landau–Ginburg–Higgs equations are chosen as examples to illustrate the method.  相似文献   

8.
The invariant subspace method is used to classify a class of systems of nonlinear dispersive evolution equations and determine their invariant subspaces and exact solutions. A crucial step is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that systems of evolution equations admit. A few examples of presenting exact solutions with generalized separated variables illustrate the effectiveness of the invariant subspace method in solving systems of nonlinear evolution equations.  相似文献   

9.
It is known that the simplest equation method is applied for finding exact solutions of autonomous nonlinear differential equations. In this paper we extend this method for finding exact solutions of non-autonomous nonlinear differential equations (DEs). We applied the generalized approach to look for exact special solutions of three Painlevé equations. As ODE of lower order than Painlevé equations the Riccati equation is taken. The obtained exact special solutions are expressed in terms of the special functions defined by linear ODEs of the second order.  相似文献   

10.
The main objective of this paper is to use the reduced differential to transform method (RDTM) for finding the analytical approximate solutions of two integral members of nonlinear Kadomtsev–Petviashvili (KP) hierarchy equations. Comparing the approximate solutions which obtained by RDTM with the exact solutions to show that the RDTM is quite accurate, reliable and can be applied for many other nonlinear partial differential equations. The RDTM produces a solution with few and easy computation. This method is a simple and efficient method for solving the nonlinear partial differential equations. The analysis shows that our analytical approximate solutions converge very rapidly to the exact solutions.  相似文献   

11.
An extended auxiliary equation method for exact traveling wave solutions of constant coefficient nonlinear partial differential equations of evolution is proposed. This, together with a convenient characterization, affords new exact traveling wave solutions of some classes of nonlinear power law diffusion equations to be obtained.  相似文献   

12.
The article presents a new method for constructing exact solutions of non-evolutionary partial differential equations with two independent variables. The method is applied to the linear classical equations of mathematical physics: the Helmholtz equation and the variable type equation. The constructed method goes back to the theory of finite-dimensional dynamics proposed for evolutionary differential equations by B. Kruglikov, O. Lychagina and V. Lychagin. This theory is a natural development of the theory of dynamical systems. Dynamics make it possible to find families that depends on a finite number of parameters among all solutions of PDEs. The proposed method is used to construct exact particular solutions of linear differential equations (Helmholtz equations and equations of variable type).  相似文献   

13.
An application of the Exp-function method to search for exact solutions of nonlinear differential equations is analyzed. Typical mistakes of application of the Exp-function method are demonstrated. We show it is often required to simplify the exact solutions obtained. Possibilities of the Exp-function method and other approaches in mathematical physics are discussed. The application of the singular manifold method for finding exact solutions of the Fitzhugh–Nagumo equation is illustrated. The modified simplest equation method is introduced. This approach is used to look for exact solutions of the generalized Korteweg–de Vries equation.  相似文献   

14.
The Auxiliary equation method is used to find analytic solutions for the Kawahara and modified Kawahara equations. It is well known that different types of exact solutions of the given auxiliary equation produce new types of exact travelling wave solutions to nonlinear equations. In this paper, new exact solutions of the auxiliary equation are presented. Using these solutions, many new exact travelling wave solutions for the Kawahara type equations are obtained.  相似文献   

15.
A new method based on Lie-B(a)cklund symmetry method to solve the perturbed nonlinear evolution equations is presented. New approximate solutions of perturbed nonlinear evolution equations stemming from the exact solutions of unperturbed equations are obtained.This method is a generalization of Burde's Lie point symmetry technique.  相似文献   

16.
In this paper, by using the integral bifurcation method and the Sakovich’s transformations, we study the two-component short pulse equations of the first kind, different kinds of exact traveling wave solutions with two-loop character, such as two-loop soliton solutions, periodic loop-compacton wave solutions and different kinds of periodic two-loop wave solutions are obtained. Further, we discuss their dynamical behaviors of these exact traveling wave solutions and show their profiles of time evolution by illustrations. This is first time in our research area that we obtain two-soliton solutions of nonlinear partial differential equations under no help of Hirota’s method, inverse scattering method, Darboux transformation and Bächlund transformation.  相似文献   

17.
By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger–KdV equations and the Hirota–Maccari equations. New exact complex solutions are obtained.  相似文献   

18.
本文提出了一种全新复合$(\frac{G''}{G})$展开方法,运用这种新方法并借助符号计算软件构造了非线性耦合Klein-Gordon方程组和耦合Schr\"{o}dinger-Boussinesq方程组的多种双行波解,包括双双曲正切函数解,双正切函数解,双有理函数解以及它们的混合解. 复合$(\frac{G''}{G})$展开方法不但直接有效地求出了两类非线性偏微分方程的双行波解,而且扩大了解的范围.这种新方法对于研究非线性偏微分方程具有广泛的应用意义.  相似文献   

19.
A new method based on Lie-Backlund symmetry method to solve the perturbed nonlinear evolution equations is presented. New approximate solutions of perturbed nonlinear evolution equations stemming from the exact solutions of unperturbed equations are obtained. This method is a generalization of Burde's Lie point symmetry technique.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号