首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a new version of the chain rule for calculating the mean square derivative of a second-order stochastic process is proven. This random operational calculus rule is applied to construct a rigorous mean square solution of the random Chebyshev differential equation (r.C.d.e.) assuming mild moment hypotheses on the random variables that appear as coefficients and initial conditions of the corresponding initial value problem. Such solution is represented through a mean square random power series. Moreover, reliable approximations for the mean and standard deviation functions to the solution stochastic process of the r.C.d.e. are given. Several examples, that illustrate the theoretical results, are included.  相似文献   

2.
In this paper, we present a new effective approach based on our previous method for solving Riccati equations [Vahidi and Didgar, An improved method for determining the solution of Riccati equations, Neural Comput & Applic DOI 10.1007/s00521-012-10645, 2012]. The proposed technique combines transformation of variables with the Laplace Adomian decomposition method, which is a variant of the classic Adomian decomposition method. The method examined practicality for several specific examples of the Riccati equation. Numerical results show that the proposed method is more efficient and accurate than other applied methods over extended intervals, and stands in good agreement to the exact solutions. The obtained results provide a rapidly convergent series, from which we achieve a high degree of accuracy using only a few terms of the recursion scheme. Thus we have developed a natural sequence of rational approximations as a technique of solution continuation for the Riccati equation.  相似文献   

3.
In this paper, a new form of homotopy perturbation method (NHPM) has been adopted for solving the quadratic Riccati differential equation. In this technique, the solution is considered as a Taylor series expansion converges rapidly to the exact solution of the nonlinear equation. Having found the exact solution of the Riccati equation, the capability and the simplicity of the proposed technique is clarified.  相似文献   

4.
In this study, generalized Hirota-Satsuma coupled KdV equation is solved using by two recent semi-analytic methods, differential transform method (DTM) and reduced form of differential transformation method (so called RDTM). The concepts of DTM and RDTM is briefly introduced, and their application for generalized Hirota-Satsuma coupled KdV equation is studied. The results obtained employing DTM and RDTM are compared with together and exact solution. As an important result, it is depicted that the RDTM results are more accurate in comparison with those obtained by classic DTM. The numerical results reveal that the RDTM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the RDTM can be found widely applicable in engineering.  相似文献   

5.
We study the Riccati equation arising in a class of quadratic optimal control problems with infinite dimensional stochastic differential state equation and infinite horizon cost functional. We allow the coefficients, both in the state equation and in the cost, to be random. In such a context backward stochastic Riccati equations are backward stochastic differential equations in the whole positive real axis that involve quadratic non-linearities and take values in a non-Hilbertian space. We prove existence of a minimal non-negative solution and, under additional assumptions, its uniqueness. We show that such a solution allows to perform the synthesis of the optimal control and investigate its attractivity properties. Finally the case where the coefficients are stationary is addressed and an example concerning a controlled wave equation in random media is proposed.  相似文献   

6.
In this paper, the problem of the numerical computation of the stabilizing solution of the game theoretic algebraic Riccati equation is investigated. The Riccati equation under consideration occurs in connection with the solution of the H  ∞  control problem for a class of stochastic systems affected by state dependent and control dependent white noise. The stabilizing solution of the considered game theoretic Riccati equation is obtained as a limit of a sequence of approximations constructed based on stabilizing solutions of a sequence of algebraic Riccati equations of stochastic control with definite sign of the quadratic part. The efficiency of the proposed algorithm is demonstrated by several numerical experiments.  相似文献   

7.
Backward stochastic Riccati equations are motivated by the solution of general linear quadratic optimal stochastic control problems with random coefficients, and the solution has been open in the general case. One distinguishing difficult feature is that the drift contains a quadratic term of the second unknown variable. In this paper, we obtain the global existence and uniqueness result for a general one-dimensional backward stochastic Riccati equation. This solves the one-dimensional case of Bismut–Peng's problem which was initially proposed by Bismut (Lecture Notes in Math. 649 (1978) 180). We use an approximation technique by constructing a sequence of monotone drifts and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean–variance hedging problem with general random market conditions.  相似文献   

8.
In this article, we consider a linear-quadratic optimal control problem (LQ problem) for a controlled linear stochastic differential equation driven by a multidimensional Browinan motion and a Poisson random martingale measure in the general case, where the coefficients are allowed to be predictable processes or random matrices. By the duality technique, the dual characterization of the optimal control is derived by the optimality system (so-called stochastic Hamilton system), which turns out to be a linear fully coupled forward-backward stochastic differential equation with jumps. Using a decoupling technique, the connection between the stochastic Hamilton system and the associated Riccati equation is established. As a result, the state feedback representation is obtained for the optimal control. As the coefficients for the LQ problem are random, here, the associated Riccati equation is a highly nonlinear backward stochastic differential equation (BSDE) with jumps, where the generator depends on the unknown variables K, L, and H in a quadratic way (see (5.9) herein). For the case where the generator is bounded and is linearly dependent on the unknown martingale terms L and H, the existence and uniqueness of the solution for the associated Riccati equation are established by Bellman's principle of quasi-linearization.  相似文献   

9.
Approximations of random operator equations are considered where the stochastic inputs and the underlying deterministic equation are approximated simultaneously. The main convergence result asserts that, under reasonable and verifiable assumptions, a sequence of weak solutions of approximate random equations converges weakly to a weak solution of the original equation. It is shown that this theorem extends and unifies results already known. We apply our theory to approximations of random differential equations involving stochastic processes with discontinuous paths and to projection methods for nonlinear random Hammerstein integral equations in spaces of integrable functions.  相似文献   

10.
11.
Combining Fourier series expansion with recursive matrix formulas, new reliable algorithms to compute the periodic, non-negative, definite stabilizing solutions of the periodic Riccati and Lyapunov matrix differential equations are proposed in this paper. First, periodic coefficients are expanded in terms of Fourier series to solve the time-varying periodic Riccati differential equation, and the state transition matrix of the associated Hamiltonian system is evaluated precisely with sine and cosine series. By introducing the Riccati transformation method, recursive matrix formulas are derived to solve the periodic Riccati differential equation, which is composed of four blocks of the state transition matrix. Second, two numerical sub-methods for solving Lyapunov differential equations with time-varying periodic coefficients are proposed, both based on Fourier series expansion and the recursive matrix formulas. The former algorithm is a dimension expanding method, and the latter one uses the solutions of the homogeneous periodic Riccati differential equations. Finally, the efficiency and reliability of the proposed algorithms are demonstrated by four numerical examples.  相似文献   

12.
In this article, approximate analytical solution of chaotic Genesio system is acquired by the modified differential transform method (MDTM). The differential transform method (DTM) is mentioned in summary. MDTM can be obtained from DTM applied to Laplace, inverse Laplace transform and Padé approximant. The MDTM is used to increase the accuracy and accelerate the convergence rate of truncated series solution getting by the DTM. Results are given with tables and figures.  相似文献   

13.
In this paper, we discuss the partial differential equation of Riccati type that describes the optimal filtering error covariance function for a linear distributed-parameter system with pointwise observations. Since this equation contains the Dirac delta function, it is impossible to apply directly the usual methods of functional analysis to prove existence and uniqueness of a bounded solution. By using properties of the fundamental solution and the classical technique of successive approximation, we prove the existence and uniqueness theorem. We then prove the comparison theorem for partial differential equations of Riccati type. Finally, we consider some applications of these theorems to the distributed-parameter optimal sensor location problem.  相似文献   

14.
This paper is concerned with the solution of the matrix Riccati differential equation with a terminal boundary condition. The solution of the matrix Riccati equation is given by using the solution of the algebraic form of the Riccati equation. An illustrative example for the proposed method is given.  相似文献   

15.
通过对一般Riccati方程进行初等变换,使之变为特殊的Riccati方程,然后利用公式、观察实验,或利用二阶微分方程的特解,或利用一阶微分方程组的特解等方法,求得这些Riccati方程的特解.  相似文献   

16.
Summary This paper is concerned with the solution of the finite time Riccati equation. The solution to the Riccati equation is given in terms of the partition of the transition matrix. Matrix differential equations for the partition of the transition matrix are derived and are solved using computational methods. Examples illustrating the method are presented and the computational algorithms are given.  相似文献   

17.
In this paper the Hamiltonian matrix formulation of the Riccati equation is used to derive the reduced-order pure-slow and pure-fast matrix differential Riccati equations of singularly perturbed systems. These pure-slow and pure-fast matrix differential Riccati equations are obtained by decoupling the singularly perturbed matrix differential Riccati equation of dimension n1+n2 into the pure-slow regular matrix differential Riccati equation of dimension n1 and the pure-fast stiff matrix differential Riccati equation of dimension n2. A formula is derived that produces the solution of the original singularly perturbed matrix differential Riccati equation in terms of solutions of the pure-slow and pure-fast reduced-order matrix differential Riccati equations and solutions of two reduced-order initial value problems. In addition to its theoretical importance, the main result of this paper can also be used to implement optimal filtering and control schemes for singularly perturbed linear time-invariant systems independently in pure-slow and pure-fast time scales.  相似文献   

18.
We consider Magnus integrators to solve linear-quadratic NN-player differential games. These problems require to solve, backward in time, non-autonomous matrix Riccati differential equations which are coupled with the linear differential equations for the dynamic state of the game, to be integrated forward in time. We analyze different Magnus integrators which can provide either analytical or numerical approximations to the equations. They can be considered as time-averaging methods and frequently are used as exponential integrators. We show that they preserve some of the most relevant qualitative properties of the solution for the matrix Riccati differential equations as well as for the remaining equations. The analytical approximations allow us to study the problem in terms of the parameters involved. Some numerical examples are also considered which show that exponential methods are, in general, superior to standard methods.  相似文献   

19.
We discuss the numerical solution of large-scale discrete-time algebraic Riccati equations (DAREs) as they arise, e.g., in fully discretized linear-quadratic optimal control problems for parabolic partial differential equations (PDEs). We employ variants of Newton??s method that allow to compute an approximate low-rank factor of the solution of the DARE. The principal computation in the Newton iteration is the numerical solution of a Stein (aka discrete Lyapunov) equation in each step. For this purpose, we present a low-rank Smith method as well as a low-rank alternating-direction-implicit (ADI) iteration to compute low-rank approximations to solutions of Stein equations arising in this context. Numerical results are given to verify the efficiency and accuracy of the proposed algorithms.  相似文献   

20.
A noniterative algebraic method is presented for solving differential Riccati equations which satisfy two-point boundary-value problems. This class of numerical problems arises in quadratic optimization problems where the cost functionals are composed of both continuous and discrete state penalties, leading to piecewise periodic feedback gains. The necessary condition defining the solution for the two-point boundary value problem is cast in the form of a discrete-time algebraic Riccati equation, by using a formal representation for the solution of the differential Riccati equation. A numerical example is presented which demonstrates the validity of the approach.The authors would like to thank Dr. Fernando Incertis, IBM Madrid Scientific Center, who reviewed this paper and pointed out that the two-point boundary-value necessary condition could be manipulated into the form of a discrete-time Riccati equation. His novel approach proved to be superior to the authors' previously proposed iterative continuation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号