首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the context of the particle finite element method (PFEM) a body is considered as a set of particles that are meshed with standard finite elements before every load step. This enables the method to cope with large topological changes where the standard FEM often fails. To mesh the set of particles, its boundary needs to be detected which is accomplished with the α-shape method, and although this method is often used within the PFEM, the crucial parameter α is not well understood. This article provides a physical interpretation of α and shows its meaning in the context of strength of materials. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The micro cutting process of microstructured material is simulated with consideration of the heterogeneities of the microstructure. In the case of cp-titanium with its hcp crystal structure the basal and prismatic slip systems are taken into account. The concept of crystal plasticity for large deformations is applied considering elastic anisotropy, self and latent hardening. The visco-plastic evolution law incorporates rate dependent material behavior. This setup is implemented within the finite element method. The effects of the microstructure are demonstrated by an illustrative example and a comparison to an isotropic von Mises elasto-plastic material. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The finite element method and the boundary element method areamong the most frequently applied tools in the numerical treatmentof partial differential equations. However, their propertiesappear to be complementary: while the boundary element methodis appropriate for the most important linear partial differentialequations with constant coefficients in bounded or unboundeddomains, the finite element method seems to be more appropriatefor inhomogeneous or even nonlinear problems. but is somehowrestricted to bounded domains. The symmetric coupling of thetwo methods inherits the advantages of both methods. This paper treats the symmetric coupling of finite elementsand boundary elements for a model transmission problem in twoand three dimensions where we have two domains: a bounded domainwith nonlinear, even plastic material behaviour, is surroundedby an unbounded, exterior, domain with isotropic homogeneouslinear elastic material. Practically. the coupling is performedsuch that the boundary element method contributes a macro-element,like a large finite element, within a standard finite elementanalysis program. Emphasis is on two-dimensional problems wherethe approach using the Poincaré-Steklov operator seemsto be impossible at first glance. E-mail: cc{at}numerik.uni-kiel.de  相似文献   

4.
The assumption of purely local continuum damage formulations may imply a loss of well-posedness of the underlying boundary value problem. With regard to numerical methods such as the finite element method, this may lead to mesh-dependent solutions, a vanishing localised damage zone upon mesh refinement, and hence physically questionable results. In order to circumvent these deficiencies, i.e. to regularise the problem, we, in this contribution, apply a non-local gradient-based damage formulation within a geometrically non-linear setting allowing for large deformations. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
6.
O. Schilling  S. Reese 《PAMM》2004,4(1):370-371
An appropriate method for the simulation of continuous forming processes is the material point method (MPM) [1],[2] which combines the viewpoints of fluid dynamics and solid mechanics. The MPM and related methods [3] are derived from the particle‐in‐cell methods [4]. Bodies are discretised by Lagragian particles with pointwise mass distributions. The differential equations in their weak form are solved on temporary meshes built of standard finite elements. At the end of each time step the particle positions are updated and the mesh is replaced by a new mesh with a regular shape. The state variables at the nodes of the new mesh are extracted from the state variables at the particles by a transfer algorithm. When particles pass element boundaries, numerical difficulties might be observed. These are eliminated by a smooth approximation of nodal data from material point data. The modified MPM has been implemented together with the FEM in one programme because the similarities of the methods outbalance the differences. On the basis of numerical examples the results of both methods are compared. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
O. Schilling  S. Reese 《PAMM》2005,5(1):445-446
Task is the simulation of forming processes using particle methods. We implemented some mesh-free methods (the element free Galerkin method [1] and others) and the finite element method in one programme system which permits a direct comparison. For the mesh-free methods a moving least squares approximation is applied. The shape functions are not zero or one at the nodes, thus essential boundary conditions cannot be imposed directly [2]. We use a penalty method to enforce essential boundary conditions and contact conditions. The contact algorithm (normal contact of nodes to C1-continuous surfaces) is checked by means of the element free Galerkin method and the FEM on the basis of numerical examples which deal with forming processes. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A finite element scheme for the approximation of large isometric deformations with minimal bending energy is devised and analyzed. The convergence to a stationary point and energy decreasing property of an iterative algorithm for the numerical solution of the scheme is proved. Numerical experiments illustrate the performance of the iteration and show that the discretization leads to accurate approximations for large vertical loads and compressive boundary conditions.  相似文献   

9.
Micro-machining processes on metalic microstructures are influenced by the crystal structure, i. e. the grain orientation. Furthermore, the chip formation underlies large deformations. To perform finite element simulations of micro-cutting processes, a large deformation material model is necessary in order to model the hyperelastic and finite plastic material behaviour. In the case of cp-titanium material with hcp-crystal structure the anisotropic behaviour must be considered by an appropriate set of slip planes and slip directions. In the present work the impact of the grain orientation on the plastic deformation is demonstrated by means of finite element simulations of a finite deformation single slip crystal plasticity model. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Especially for specific applications, such as contact problems, computer methods for flexible multibody dynamics that are able to treat large deformation phenomena are important. Classical formalisms for multibody dynamics are based on rigid bodies. Their extension to flexible multibody systems is typically restricted to linear elastic material behavior whereas large deformation phenomena are formulated in the framework of the nonlinear finite element method. In the talk we address computer methods that can handle large deformations in the context of multibody systems. In particular, the link between nonlinear continuum mechanics and multibody systems is facilitated by a specific formulation of rigid body dynamics [1]. It makes possible the incorporation of state-of-the-art computer methods for large deformation problems. In the talk we focus on the treatment of large deformation contact whithin flexible multibody dynamics [2]. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Alexander Janz  Peter Betsch 《PAMM》2015,15(1):205-206
In the present paper we consider structure-preserving integration methods in the context of mixed finite elements. The used low-order mixed finite elements typically exhibit improved coarse mesh accuracy. On the other hand energy-momentum (EM) consistent time-stepping schemes have been developed in the realm of nonlinear structural dynamics to enhance the numerical stability properties. EM schemes typically exhibit superior robustness and thus offer the possibility to use large time steps while still producing physically meaningful results. Accordingly, combining mixed finite element discretizations in space with EM consistent discretizations in time shows great promise for the design of numerical methods with superior coarse mesh accuracy in space and time. Starting with a general Hu-Washizu-type variational formulation we develop a second-order accurate structure-preserving integration scheme. The present approach is applicable to a large number of mixed finite element formulations. As sample application we deal with a specific mixed shell element. Numerical examples dealing with large deformations will show the improved coarse mesh accuracy in space and time of the advocated approach. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Dielectric materials such as electro-active polymers (EAPs) belong to the class of functional materials which are used in advanced industrial environments as sensors or actuators and in other innovative fields of research. Driven by Coulomb-type electrostatic forces EAPs are theoretically able to withstand deformations of several hundred percents. However, large actuation fields and different types of instabilities prohibit the ascend of these materials. One distinguishes between global structural instabilities such as buckling and wrinkling of EAP devices, and local material instabilities such as limit- and bifurcation-points in the constitutive response. We outline variational-based stability criteria in finite electro-elastostatics and design algorithms for accompanying stability checks in typical finite element computations. These accompanying stability checks are embedded into a computational homogenization framework to predict the macroscopic overall response and onset of local material instability of particle filled composite materials. Application and validation of the suggested method is demonstrated by representative model problems. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Dielectric materials such as electro-active polymers (EAPs) belong to the class of functional materials which are used in advanced industrial environments as sensors or actuators and in other innovative fields of research. Driven by Coulomb-type electrostatic forces EAPs are theoretically able to withstand deformations of several hundred percents. However, large actuation fields and different types of instabilities prohibit the ascend of these materials. One distinguishes between global structural instabilities such as buckling and wrinkling of EAP devices, and local material instabilities such as limit- and bifurcation-points in the constitutive response. We outline variational-based stability criteria in finite electro-elastostatics and design algorithms for accompanying stability checks in typical finite element computations. These accompanying stability checks are embedded into a computational homogenization framework to predict the macroscopic overall response and onset of local material instability of particle filled composite materials. Application and validation of the suggested method is demonstrated by a representative model problem. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The micro cutting process of microstructured material is influenced by the heterogeneity of the microstructure. In case of cp-titanium an hcp crystal structure is present. Therefore the material response is described with elastic anisotropy and crystal plasticity with the prismatic and basal slip systems of cp-titanium. Also self and latent hardening are considered. The rate dependency is taken into account by a visco-plastic evolution law. In order to investigate a micro cutting process the concept of configurational forces for standard dissipative media is used. Within the finite element method an example illustrates the effects of the heterogeneity and the grain boundary on the configurational force. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this study, both the dual reciprocity boundary element method and the differential quadrature method are used to discretize spatially, initial and boundary value problems defined by single and system of nonlinear reaction–diffusion equations. The aim is to compare boundary only and a domain discretization method in terms of accuracy of solutions and computational cost. As the time integration scheme, the finite element method is used achieving solution in terms of time block with considerably large time steps. The comparison between the dual reciprocity boundary element method and the differential quadrature method solutions are made on some test problems. The results show that both methods achieve almost the same accuracy when they are combined with finite element method time discretization. However, as a method providing very good accuracy with considerably small number of grid points differential quadrature method is preferrable.  相似文献   

16.
L. Stanković  J. Mosler 《PAMM》2007,7(1):4060021-4060022
A novel fully three–dimensional framework for the numerical analysis of shear bands in solids undergoing large deformations is presented. The effect of micro shear bands on the macroscopic material response is computed by means of a homogenization strategy. More precisely, a strain–driven approach which complies well with displacement–driven finite element formulations is adopted. The proposed implementation is based on periodic boundary conditions for the micro–scale. Details about the implementation of the resulting constraints into a three–dimensional framework are discussed. The shear bands occurring at the micro–scale are modeled by a cohesive zone law, i.e., the tangential component of the traction vector governs the relative shear sliding displacement. This law is embedded into a Strong Discontinuity Approach (SDA). To account for realistic sliding modes, multiple shear bands are allowed to form and propagate in each finite element. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The theory of Cosserat points is the basis of a 3D finite element formulation for large deformations in structural mechanics, that recently was presented by [1]. First investigations [2] have revealed, that this formulation is free of showing undesired locking or hourglassing-phenomena. It additionally shows excellent behaviour for any type of incompressible material, for large deformations and sensitive structures such as plates or shells. The formulation initially was restricted to a Neo-Hookean material. This work will present the extension to a general elastic Ogden material and the verification of the chosen model. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
《Applied Mathematical Modelling》2014,38(15-16):3781-3801
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.  相似文献   

19.
Summary. The boundary element method (BEM) is of advantage in many applications including far-field computations in magnetostatics and solid mechanics as well as accurate computations of singularities. Since the numerical approximation is essentially reduced to the boundary of the domain under consideration, the mesh generation and handling is simpler than, for example, in a finite element discretization of the domain. In this paper, we discuss fast solution techniques for the linear systems of equations obtained by the BEM (BE-equations) utilizing the non-overlapping domain decomposition (DD). We study parallel algorithms for solving large scale Galerkin BE–equations approximating linear potential problems in plane, bounded domains with piecewise homogeneous material properties. We give an elementary spectral equivalence analysis of the BEM Schur complement that provides the tool for constructing and analysing appropriate preconditioners. Finally, we present numerical results obtained on a massively parallel machine using up to 128 processors, and we sketch further applications to elasticity problems and to the coupling of the finite element method (FEM) with the boundary element method. As shown theoretically and confirmed by the numerical experiments, the methods are of algebraic complexity and of high parallel efficiency, where denotes the usual discretization parameter. Received August 28, 1996 / Revised version received March 10, 1997  相似文献   

20.
A numerical method for design of beams and frames with complex topology is proposed. The method is based on extended multi-scale finite element method where beam finite elements are used on coarse scale and continuum elements on fine scale. A procedure for calculation of multi-scale base functions, up-scaling and downscaling techniques is proposed by using a modified version of window method that is used in computational homogenization. Coarse scale finite element is embedded into a frame of a material that is representing surrounding structure in a sense of mechanical properties. Results show that this method can capture displacements, shear deformations and local stress-strain gradients with significantly reduced computational time and memory comparing to full scale continuum model. Moreover, this method includes a special hybrid finite elements for precise modelling of structural joints. Hence, the proposed method has a potential application in large scale 2D and 3D structural analysis of non-standard beams and frames where spatial interaction between structural elements is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号