首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transmission of a vertex v in a graph is the sum of the distances from v to all other vertices of the graph. In a transmission irregular graph, the transmissions of all vertices are pairwise distinct. It is known that almost all graphs are not transmission irregular. Some infinite family of transmission irregular trees was constructed by Alizadeh and Klav?ar [Appl.Math. Comput. 328, 113–118 (2018)] and the following problemwas formulated: Is there an infinite family of 2-connected graphs with the property? In this article, we construct an infinite family of 2-connected transmission irregular graphs.  相似文献   

2.
3.
4.
In the b-coloring problem, we aim to assign colors from a set C to the vertices of a graph G in such a way that adjacent vertices do not receive the same color, and for every cC we have a c-colored vertex v in G such that every color in C{c} is assigned to at least one of v’s neighbors. It has been shown that b-coloring is NP-complete, so we propose in this article an approach for the problem under integer programming techniques. To this end, we give an integer programming formulation and study the associated polytope. We provide several families of valid inequalities, and analyze facetness conditions for them. Finally, we show computational evidence suggesting that the given inequalities may be useful in a branch-and-cut environment.  相似文献   

5.
《Discrete Mathematics》2019,342(4):1195-1212
A graph G is H-saturated for a graph H, if G does not contain a copy of H but adding any new edge to G results in such a copy. An H-saturated graph on a given number of vertices always exists and the properties of such graphs, for example their highest density, have been studied intensively.A graph G is H-induced-saturated if G does not have an induced subgraph isomorphic to H, but adding an edge to G from its complement or deleting an edge from G results in an induced copy of H. It is not immediate anymore that H-induced-saturated graphs exist. In fact, Martin and Smith (2012) showed that there is no P4-induced-saturated graph. Behrens et al. (2016) proved that if H belongs to a few simple classes of graphs such as a class of odd cycles of length at least 5, stars of size at least 2, or matchings of size at least 2, then there is an H-induced-saturated graph.This paper addresses the existence question for H-induced-saturated graphs. It is shown that Cartesian products of cliques are H-induced-saturated graphs for H in several infinite families, including large families of trees. A complete characterization of all connected graphs H for which a Cartesian product of two cliques is an H-induced-saturated graph is given. Finally, several results on induced saturation for prime graphs and families of graphs are provided.  相似文献   

6.
Let k be a positive integer. An adjacent vertex distinguishing (for short, AVD) total-k-coloring of a graph G is a proper total-k-coloring of G such that any two adjacent vertices have different color sets, where the color set of a vertex v contains the color of v and the colors of its incident edges. It was conjectured that any graph with maximum degree Δ has an AVD total-(Δ+3)-coloring. The conjecture was confirmed for any graph with maximum degree at most 4 and any planar graph with maximum degree at least 10. In this paper, we verify the conjecture for all planar graphs with maximum degree at least 9. Moreover, we prove that any planar graph with maximum degree at least 10 has an AVD total-(Δ+2)-coloring and the bound Δ+2 is sharp.  相似文献   

7.
Let G be a finite, connected graph. The average distance of a vertex v of G is the arithmetic mean of the distances from v to all other vertices of G. The remoteness ρ(G) and the proximity π(G) of G are the maximum and the minimum of the average distances of the vertices of G. In this paper, we present a sharp upper bound on the remoteness of a triangle-free graph of given order and minimum degree, and a corresponding bound on the proximity, which is sharp apart from an additive constant. We also present upper bounds on the remoteness and proximity of C4-free graphs of given order and minimum degree, and we demonstrate that these are close to being best possible.  相似文献   

8.
《Discrete Mathematics》2021,344(12):112622
A Deza graph G with parameters (n,k,b,a) is a k-regular graph with n vertices such that any two distinct vertices have b or a common neighbours. The children GA and GB of a Deza graph G are defined on the vertex set of G such that every two distinct vertices are adjacent in GA or GB if and only if they have a or b common neighbours, respectively. A strongly Deza graph is a Deza graph with strongly regular children. In this paper we give a spectral characterisation of strongly Deza graphs, show relationships between eigenvalues, and study strongly Deza graphs which are distance-regular.  相似文献   

9.
A canonical double cover B(X) of a graph X is the direct product of X and the complete graph K2 on two vertices. In order to answer the question when a canonical double cover of a given graph is a Cayley graph, in 1992 Maru?i? et al. introduced the concept of generalized Cayley graphs. In this paper this concept is generalized to a wider class of graphs, the so-called extended generalized Cayley graphs. It is proved that the canonical double cover of a connected non-bipartite graph X is a Cayley graph if and only if X is an extended generalized Cayley graph. This corrects an incorrectly stated claim in [Discrete Math. 102 (1992), 279–285].  相似文献   

10.
11.
Let G be a connected graph. The eccentricity e(v) of a vertex v is the distance from v to a vertex farthest from v. The average eccentricity avec(G) of G is defined as the average of the eccentricities of the vertices of G, i.e., as 1|V|vVe(v), where V is the vertex set of G. For kN, the k-packing number of G is the largest cardinality of a set of vertices of G whose pairwise distance is greater than k. A k-dominating set of G is a set S of vertices such that every vertex of G is within distance k from some vertex of S. The k-domination number (connected k-domination number) of G is the minimum cardinality of a k-dominating set (of a k-dominating set that induces a connected subgraph) of G. For k=1, the k-packing number, the k-domination number and the connected k-domination number are the independence number, the domination number and the connected domination number, respectively. In this paper we present upper bounds on the average eccentricity of graphs in terms of order and either k-packing number, k-domination number or connected k-domination number.  相似文献   

12.
13.
If G is a finite group and k=q>2 or k=q+1 for a prime power q then, for infinitely many integers v, there is a 2-(v,k,1)-design D for which AutD?G.  相似文献   

14.
In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability. In this paper, we motivate and define a new list analogue of equitable coloring called proportional choosability. A k-assignment L for a graph G specifies a list L(v) of k available colors for each vertex v of G. An L-coloring assigns a color to each vertex v from its list L(v). For each color c, let η(c) be the number of vertices v whose list L(v) contains c. A proportionalL-coloring of G is a proper L-coloring in which each color c?vV(G)L(v) is used ?η(c)k? or ?η(c)k? times. A graph G is proportionallyk-choosable if a proportional L-coloring of G exists whenever L is a k-assignment for G. We show that if a graph G is proportionally k-choosable, then every subgraph of G is also proportionally k-choosable and also G is proportionally (k+1)-choosable, unlike equitable choosability for which analogous claims would be false. We also show that any graph G is proportionally k-choosable whenever kΔ(G)+?|V(G)|2?, and we use matching theory to completely characterize the proportional choosability of stars and the disjoint union of cliques.  相似文献   

15.
16.
《Discrete Mathematics》2022,345(12):113173
For a graph G, the unraveled ball of radius r centered at a vertex v is the ball of radius r centered at v in the universal cover of G. We obtain a lower bound on the weighted spectral radius of unraveled balls of fixed radius in a graph with positive weights on edges, which is used to present an upper bound on the sth (where s2) smallest normalized Laplacian eigenvalue of irregular graphs under minor assumptions. Moreover, when s=2, the result may be regarded as an Alon–Boppana type bound for a class of irregular graphs.  相似文献   

17.
18.
Let G=(V,E) be a connected graph with m edges. An antimagic labeling of G is a one-to-one mapping from E to {1,2,,m} such that the vertex sum (i.e., sum of the labels assigned to edges incident to a vertex) for distinct vertices are different. A graph G is called antimagic if G has an antimagic labeling. It was conjectured by Hartsfield and Ringel that every tree other than K2 is antimagic. The conjecture remains open though it was verified for trees with some constrains. Caterpillars are an important subclass of trees. This paper shows caterpillars with maximum degree 3 are antimagic, which gives an affirmative answer to an open problem of Lozano et al. (2019).  相似文献   

19.
An incidence of a graph G is a pair (u,e) where u is a vertex of G and e is an edge of G incident to u. Two incidences (u,e) and (v,f) of G are adjacent whenever (i) u=v, or (ii) e=f, or (iii) uv=e or uv=f. An incidencek-coloring of G is a mapping from the set of incidences of G to a set of k colors such that every two adjacent incidences receive distinct colors. The notion of incidence coloring has been introduced by Brualdi and Quinn Massey (1993) from a relation to strong edge coloring, and since then, has attracted a lot of attention by many authors.On a list version of incidence coloring, it was shown by Benmedjdoub et al. (2017) that every Hamiltonian cubic graph is incidence 6-choosable. In this paper, we show that every cubic (loopless) multigraph is incidence 6-choosable. As a direct consequence, it implies that the list strong chromatic index of a (2,3)-bipartite graph is at most 6, where a (2,3)-bipartite graph is a bipartite graph such that one partite set has maximum degree at most 2 and the other partite set has maximum degree at most 3.  相似文献   

20.
《Discrete Mathematics》2019,342(3):777-783
Let G be a connected graph. A configuration of pebbles assigns a nonnegative integer number of pebbles to each vertex of G. A move consists of removing two pebbles from one vertex and placing one pebble on an adjacent vertex. A configuration is solvable if any vertex can get at least one pebble through a sequence of moves. The pebbling number of G, denoted π(G), is the smallest integer such that any configuration of π(G) pebbles on G is solvable. A graph has the two-pebbling property if after placing more than 2π(G)q pebbles on G, where q is the number of vertices with pebbles, there is a sequence of moves so that at least two pebbles can be placed on any vertex. A graph has the odd-two-pebbling property if after placing more than 2π(G)r pebbles on G, where r is the number of vertices with an odd number of pebbles, there is a sequence of moves so that at least two pebbles can be placed on any vertex. In this paper, we prove that the two-pebbling and odd-two-pebbling properties are not equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号