首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
In this paper, we further investigate the constructions on three‐dimensional optical orthogonal codes with the at most one optical pulse per wavelength/time plane restriction (briefly AM‐OPP 3D ‐OOCs) by way of the corresponding designs. Several new auxiliary designs such as incomplete holey group divisible designs and incomplete group divisible packings are introduced and therefore new constructions are presented. As a consequence, the exact number of codewords of an optimal AM‐OPP 3D ‐OOC is finally determined for any positive integers and .  相似文献   

2.
The purpose of this paper is to classify all pairs , where is a nontrivial 2‐ design, and acts transitively on the set of blocks of and primitively on the set of points of with sporadic socle. We prove that there exists only one such pair : is the unique 2‐(176,8,2) design and , the Higman–Sims simple group.  相似文献   

3.
The Hamilton–Waterloo problem asks for a 2‐factorization of (for v odd) or minus a 1‐factor (for v even) into ‐factors and ‐factors. We completely solve the Hamilton–Waterloo problem in the case of C3‐factors and ‐factors for .  相似文献   

4.
It is shown that, if is a nontrivial 2‐ symmetric design, with , admitting a flag‐transitive automorphism group G of affine type, then , p an odd prime, and G is a point‐primitive, block‐primitive subgroup of . Moreover, acts flag‐transitively, point‐primitively on , and is isomorphic to the development of a difference set whose parameters and structure are also provided.  相似文献   

5.
Given nonnegative integers , the Hamilton–Waterloo problem asks for a factorization of the complete graph into α ‐factors and β ‐factors. Without loss of generality, we may assume that . Clearly, v odd, , , and are necessary conditions. To date results have only been found for specific values of m and n. In this paper, we show that for any integers , these necessary conditions are sufficient when v is a multiple of and , except possibly when or 3. For the case where we show sufficiency when with some possible exceptions. We also show that when are odd integers, the lexicographic product of with the empty graph of order n has a factorization into α ‐factors and β ‐factors for every , , with some possible exceptions.  相似文献   

6.
An is a triple , where X is a set of points, is a partition of X into m disjoint sets of size n and is a set of 4‐element transverses of , such that each 3‐element transverse of is contained in exactly one of them. If the full automorphism group of an admits an automorphism α consisting of n cycles of length m (resp. m cycles of length n), then this is called m‐cyclic (resp. semi‐cyclic). Further, if all block‐orbits of an m‐cyclic (resp. semi‐cyclic) are full, then it is called strictly cyclic. In this paper, we construct some infinite classes of strictly m‐cyclic and semi‐cyclic , and use them to give new infinite classes of perfect two‐dimensional optical orthogonal codes with maximum collision parameter and AM‐OPPTS/AM‐OPPW property.  相似文献   

7.
Let there is an . For or , has been determined by Hanani, and for or , has been determined by the first author. In this paper, we investigate the case . A necessary condition for is . It is known that , and that there is an for all with a possible exception . We need to consider the case . It is proved that there is an for all with an exception and a possible exception , thereby, .  相似文献   

8.
A q‐ary code of length n, size M, and minimum distance d is called an code. An code with is said to be maximum distance separable (MDS). Here one‐error‐correcting () MDS codes are classified for small alphabets. In particular, it is shown that there are unique (5, 53, 3)5 and (5, 73, 3)7 codes and equivalence classes of (5, 83, 3)8 codes. The codes are equivalent to certain pairs of mutually orthogonal Latin cubes of order q, called Graeco‐Latin cubes.  相似文献   

9.
We consider the existence problem for a semi‐cyclic holey group divisible design of type with block size 3, which is denoted by a 3‐SCHGDD of type . When t is odd and or t is doubly even and , the existence problem is completely solved; when t is singly even, many infinite families are obtained. Applications of our results to two‐dimensional balanced sampling plans and optimal two‐dimensional optical orthogonal codes are also discussed.  相似文献   

10.
A t‐spontaneous emission error design, denoted by t‐ SEED or t‐SEED in short, is a system of k‐subsets of a v‐set V with a partition of satisfying for any and , , where is a constant depending only on E. The design of t‐SEED was introduced by Beth et al. in 2003 (T. Beth, C. Charnes, M. Grassl, G. Alber, A. Delgado, M. Mussinger, Des Codes Cryptogr 29 (2003), 51–70) to construct quantum jump codes. The number m of designs in a t‐ SEED is called dimension, which corresponds to the number of orthogonal basis states in a quantum jump code. A t‐SEED is nondegenerate if every point appears in each of its member design. A nondegenerate t‐SEED is called optimal when it achieves the largest possible dimension. This paper investigates the dimension of optimal 1‐SEEDs, in which Baranyai's Lemma plays a significant role and the hypergraph distribution is closely related as well. Several classes of optimal 1‐SEEDs are shown to exist. In particular, we determine the exact dimensions of optimal 1‐ SEEDs for all orders v and block sizes k with .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号