首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Semilocal convergence for a class of improved multi-step Chebyshev–Halley-like methods is considered in this paper. Compared with the results for the Chebyshev method in Hernández (J Comput Appl Math 126:131–143, 2000), the R-order of convergence is heightened and the Hölder continuity of second derivative is also relaxed. Moreover, an existence-uniqueness theorem is proved under the extended conditions.  相似文献   

2.
In this paper, we consider the semilocal convergence on a family of root-finding multi-point methods. Compared with the results in reference (Hernández, M.A., Salanova, M.A., J. Comput. Appl. Math. 126, 131–143 3), these multi-point methods do not require the second derivative, Hölder continuity condition is relaxed, and the R-order is also enhanced. We prove an existence-uniqueness theorem of the solution. The R-order for these multi-point methods is at least 6 + q with relaxed continuous second derivative, where q∈[0,1].  相似文献   

3.
In this paper, we focus on the semilocal convergence for a family of improved super-Halley methods for solving non-linear equations in Banach spaces. Different from the results in Wang et al. (J Optim Theory Appl 153:779–793, 2012), the condition of Hölder continuity of third-order Fréchet derivative is replaced by its general continuity condition, and the latter is weaker than former. Moreover, the R-order of the methods is also improved. By using the recurrence relations, we prove a convergence theorem to show the existence-uniqueness of the solution. The R-order of these methods is analyzed with the third-order Fréchet derivative of the operator satisfies general continuity condition and Hölder continuity condition.  相似文献   

4.
In this paper, we consider the semilocal convergence of multi-point improved super-Halley-type methods in Banach space. Different from the results of super-Halley method studied in reference Gutiérrez, J.M. and Hernández, M.A. (Comput. Math. Appl. 36,1–8, 1998) these methods do not require second derivative of an operator, the R-order is improved and the convergence condition is also relaxed. We prove a convergence theorem to show existence and uniqueness of the solution.  相似文献   

5.
6.
In this paper, we study the semilocal convergence for a fifth-order method for solving nonlinear equations in Banach spaces. The semilocal convergence of this method is established by using recurrence relations. We prove an existence-uniqueness theorem and give a priori error bounds which demonstrates the R-order of the method. As compared with the Jarratt method in Hernández and Salanova (Southwest J Pure Appl Math 1:29–40, 1999) and the Multi-super-Halley method in Wang et al. (Numer Algorithms 56:497–516, 2011), the differentiability conditions of the convergence of the method in this paper are mild and the R-order is improved. Finally, we give some numerical applications to demonstrate our approach.  相似文献   

7.
We present a local as well as a semilocal convergence analysis for Newton’s method for approximating a locally unique solution of a nonlinear equation in a Banach space setting. Our hypotheses involve m-Fréchet-differentiable operators and general Lipschitz-type hypotheses, where m≥2 is a positive integer. The new convergence analysis unifies earlier results; it is more flexible and provides a finer convergence analysis than in earlier studies such as Argyros in J. Comput. Appl. Math. 131:149–159, 2001, Argyros and Hilout in J. Appl. Math. Comput. 29:391–400, 2009, Argyros and Hilout in J. Complex. 28:364–387, 2012, Argyros et al. Numerical Methods for Equations and Its Applications, CRC Press/Taylor & Francis, New York, 2012, Gutiérrez in J. Comput. Appl. Math. 79:131–145, 1997, Ren and Argyros in Appl. Math. Comput. 217:612–621, 2010, Traub and Wozniakowski in J. Assoc. Comput. Mech. 26:250–258, 1979. Numerical examples are presented further validating the theoretical results.  相似文献   

8.
In this paper, we study the semilocal convergence and R-order for a class of modified Chebyshev-Halley methods for solving non-linear equations in Banach spaces. To solve the problem that the third-order derivative of an operator is neither Lipschitz continuous nor Hölder continuous, the condition of Lipschitz continuity of third-order Fréchet derivative considered in Wang et al. (Numer Algor 56:497–516, 2011) is replaced by its general continuity condition, and the latter is weaker than the former. Furthermore, the R-order of these methods is also improved under the same condition. By using the recurrence relations, a convergence theorem is proved to show the existence-uniqueness of the solution and give a priori error bounds. We also analyze the R-order of these methods with the third-order Fréchet derivative of an operator under different continuity conditions. Especially, when the third-order Fréchet derivative is Lipschitz continuous, the R-order of the methods is at least six, which is higher than the one of the method considered in Wang et al. (Numer Algor 56:497–516, 2011) under the same condition.  相似文献   

9.
We present new sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of an equation in a Banach space setting. Upper bounds on the limit points of majorizing sequences are also given. Numerical examples are provided, where our new results compare favorably to earlier ones such as Argyros (J Math Anal Appl 298:374–397, 2004), Argyros and Hilout (J Comput Appl Math 234:2993-3006, 2010, 2011), Ortega and Rheinboldt (1970) and Potra and Pták (1984).  相似文献   

10.
The aim of this paper is to describe a continuation method combining the Chebyshev’s method and the convex acceleration of Newton’s method to solve nonlinear equations in Banach spaces. The semilocal convergence analysis of the method is established using recurrence relations under the assumption that the first Fréchet derivative satisfies the Hölder continuity condition. This condition is milder than the usual Lipschitz condition. The computation of second Fréchet derivative is also avoided. Two real valued functions and a real sequence are used to establish a convergence criterion of R-order (1+p), where p∈(0,1] is the order of the Hölder condition. An existence and uniqueness theorem along with the closed form of error bounds is derived in terms of a real parameter α∈[0,1]. Two numerical examples are worked out to demonstrate the efficacy of our convergence analysis. For both the examples, the convergence conditions hold for the Chebyshev’s method (α=0). However, for the convex acceleration of Newton’s method (α=1), these convergence conditions hold for the first example but fail for the second example. For particular values of α, our method reduces to the Chebyshev’s method (α=0) and the convex acceleration of Newton’s method (α=1).  相似文献   

11.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

12.
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods, under mild differentiability conditions. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in some interesting cases (Chen, Ann Inst Stat Math 42:387–401, 1990; Chen, Numer Funct Anal Optim 10:37–48, 1989; Cianciaruso, Numer Funct Anal Optim 24:713–723, 2003; Cianciaruso, Nonlinear Funct Anal Appl 2009; Dennis 1971; Deuflhard 2004; Deuflhard, SIAM J Numer Anal 16:1–10, 1979; Gutiérrez, J Comput Appl Math 79:131–145, 1997; Hernández, J Optim Theory Appl 109:631–648, 2001; Hernández, J Comput Appl Math 115:245–254, 2000; Huang, J Comput Appl Math 47:211–217, 1993; Kantorovich 1982; Miel, Numer Math 33:391–396, 1979; Miel, Math Comput 34:185–202, 1980; Moret, Computing 33:65–73, 1984; Potra, Libertas Mathematica 5:71–84, 1985; Rheinboldt, SIAM J Numer Anal 5:42–63, 1968; Yamamoto, Numer Math 51: 545–557, 1987; Zabrejko, Numer Funct Anal Optim 9:671–684, 1987; Zinc̆ko 1963). Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

13.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

14.
A local as well as a semilocal convergence analysis for Newton–Jarratt–type iterative method for solving equations in a Banach space setting is studied here using information only at a point via a gamma-type condition (Argyros in Approximate Solution of Operator Equations with Applications, [2005]; Wang in Chin. Sci. Bull. 42(7):552–555, [1997]). This method has already been examined by us in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]), where the order of convergence four was established using however information on the domain of the operator. In this study we also establish the same order of convergence under weaker conditions. Moreover we show that all though we use weaker conditions the results obtained here can be used to solve equations in cases where the results in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]) cannot apply. Our method is inverse free, and therefore cheaper at the second step in contrast with the corresponding two–step Newton methods. Numerical Examples are also provided.  相似文献   

15.
《Optimization》2012,61(9):1685-1718
In this paper, we obtain Hölder continuity of the nonlinear scalarizing function for l-type less order relation, which is introduced by Hernández and Rodríguez-Marín (J. Math. Anal. Appl. 2007;325:1–18). Moreover, we introduce the nonlinear scalarizing function for u-type less order relation and establish continuity, convexity and Hölder continuity of the nonlinear scalarizing function for u-type less order relation. As applications, we firstly obtain Lipschitz continuity of solution mapping to the parametric equilibrium problems and then establish Lipschitz continuity of strongly approximate solution mappings for l-type less order relation, u-type less order relation and set less order relation to the parametric set optimization problems by using convexity and Hölder continuity of the nonlinear scalarizing functions.  相似文献   

16.
A class of Steffensen-type algorithms for solving generalized equations on Banach spaces is proposed. Using well-known fixed point theorem for set-valued maps [A.L. Dontchev, W.W. Hager, An inverse function theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994) 481-489] and some conditions on the first-order divided difference, we provide a local convergence analysis. We also study the perturbed problem and we present a new regula-falsi-type method for set-valued mapping. This study follows the works on the Secant-type method presented in [S. Hilout, A uniparametric Secant-type methods for nonsmooth generalized equations, Positivity (2007), submitted for publication; S. Hilout, A. Piétrus, A semilocal convergence of a Secant-type method for solving generalized equations, Positivity 10 (2006) 673-700] and extends the results related to the resolution of nonlinear equations [M.A. Hernández, M.J. Rubio, The Secant method and divided differences Hölder continuous, Appl. Math. Comput. 124 (2001) 139-149; M.A. Hernández, M.J. Rubio, Semilocal convergence of the Secant method under mild convergence conditions of differentiability, Comput. Math. Appl. 44 (2002) 277-285; M.A. Hernández, M.J. Rubio, ω-Conditioned divided differences to solve nonlinear equations, in: Monogr. Semin. Mat. García Galdeano, vol. 27, 2003, pp. 323-330; M.A. Hernández, M.J. Rubio, A modification of Newton's method for nondifferentiable equations, J. Comput. Appl. Math. 164/165 (2004) 323-330].  相似文献   

17.
The semilocal convergence of Super-Halley’s method for solving nonlinear equations in Banach spaces is established under the assumption that the second Frëchet derivative satisfies the ω-continuity condition. This condition is milder than the well-known Lipschitz and Hölder continuity conditions. The importance of our work lies in the fact that numerical examples can be given to show that our approach is successful even in cases where the Lipschitz and the Hölder continuity conditions fail. The difficult computation of second Frëchet derivative is also avoided by replacing it with the divided difference containing only the first Frëchet derivatives. A number of recurrence relations based on two parameters are derived. A convergence theorem is established to estimate a priori error bounds along with the domains of existence and uniqueness of the solutions. The R-order convergence of the method is shown to be at least three. Two numerical examples are worked out to demonstrate the efficacy of our method. It is observed that in both examples the existence and uniqueness regions of solution are improved when compared with those obtained in [7].  相似文献   

18.
The paper is concerned with the application of Kantorovich-type majorants for the convergence of Newton’s method to a locally unique solution of a nonlinear equation in a Banach space setting. The Fréchet-derivative of the operator involved satisfies only a rather weak continuity condition. Using our new idea of recurrent functions, we obtain sufficient convergence conditions, as well as error estimates. The results compare favorably to earlier ones (Ezquerro, Hernández in IMA J. Numer. Anal. 22:187–205, 2002 and Proinov in J. Complex. 26:3–42, 2010).  相似文献   

19.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

20.
In this paper, we study a class of improved Chebyshev–Halley methods in Banach spaces and prove the semilocal convergence for these methods. Compared with the super-Halley method, these methods need one less inversion of an operator, and the R-order of these methods is also higher than the one of super-Halley method under the same conditions. Using recurrence relations, we analyze the semilocal convergence for these methods under two different convergence conditions. The convergence theorems are proved to show the existence and uniqueness of a solution. We also give some numerical results to show our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号