共查询到15条相似文献,搜索用时 46 毫秒
1.
2.
3.
0-1背包问题是组合优化中的一个典型NP难题,介于其具有广泛的实际应用,有效的解决该问题具有非常重要的意义.给出了一种新的群智能算法—细菌觅食算法,对0-1背包问题进行求解.经模拟仿真验证了该算法的有效性,并将其结果与其他方法进行对比分析. 相似文献
4.
求解多维0-1背包问题的人工鱼群算法 总被引:1,自引:0,他引:1
对于多维0-1背包问题,国内外学者提出了诸如模拟退火、遗传算法、蚁群算法以及其他启发式算法.给出一种新的智能寻优方法——人工鱼群算法.算法通过各人工鱼的局部寻优,从而在群体中体现出全局最优.描述了人工鱼群算法的具体步骤并编程实现,通过多维背包算例进行了求解测试,获得了满意的效果. 相似文献
5.
针对非线性0-1规划,提出采用一种智能优化算法——蜂群算法进行求解.描述了蜂群算法的实现过程,并在计算机上编程予以实现.经大量实例测试,并与其它算法进行比较,获得了满意的结果.说明了蜂群算法在解决非线性0-1规划问题上的可行性与有效性,同时具有良好的优化能力.. 相似文献
6.
7.
研究了分组0-1背包问题,提出了一种动态规划解决方法,在物品总数为n个和背包承重量为W时,递推过程的复杂度为O(nW),回溯过程的复杂度为O(n).计算实例表明利用该方法易于找到最优解. 相似文献
8.
The multiple knapsack problem denoted by MKP (B,S,rn,n) can be defined as follows. A set B of n items and a set S of rn knapsacks are given such that each item j has a profit pi and weight wj,and each knapsack i has a capacity Ci. The goal is to find a subset of items of maximum profit such that they have a feasible packing in the knapsacks. MKP (B,S,m,n) is strongly NP-Complete and no polynomial time approximation algorithm can have an approximation ratio better than 0.5. In the last ten years,semi-definite programming has been empolyed to solve some combinatorial problems successfully. This paper firstly presents a semi-definite relaxation algorithm (MKPS) for MKP (B,S,rn,n). It is proved that MKPS have a approximation ratio better than 0. 5 for a subclass of MKP (B,S,m,n) with n≤100, m≤5 and max^nj=1{wj}/min^mi=1={Ci}≤2/3. 相似文献
10.
针对有界背包问题,本文提出一种结合核算法的改进萤火虫算法.首先采用核算法对问题规模进行缩减,为了使算法更适于不同规模的有界背包问题,根据规模对核半径进行自适应控制,对缩减后的剩余物品利用基于Levy飞行的萤火虫算法进行位置更新,并对更新后的最优个体进行变异操作以此增加种群多样性.通过仿真实验表明新改进算法能有效求解有界... 相似文献
11.
采用人工蜂群算法对配送中心选址问题进行求解,给出食物源的编码方法,通过整数规范化,使算法能在整数空间内对问题进行求解.应用算法进行了仿真实验,并将结果与其它一些启发式算法进行了比较和分析.计算结果表明人工蜂群算法可以有效求解配送中心选址问题,同时也为算法求解其它一些组合优化问题提供了有益思路. 相似文献
12.
云计算环境下人工蜂群作业调度算法设计 总被引:1,自引:0,他引:1
杨海军 《数学的实践与认识》2012,42(10):115-120
针对云计算环境下作业调度优化问题,提出了一种基于人工蜂群的调度算法.分析人工蜂群算法的求解组合优化问题过程,建立了收益度函数和蜜源位置更新公式,最后论述了利用该算法求解的具体步骤.并通过实验分析了该算法的性能. 相似文献
13.
为了克服人工蜂群算法蜜源更新过程中的随机性并保留蜜源中个体序列合理的组合形式,通过分析基本蜂群算法更新公式的机理,提出一种改进GA(Genetic A1gorithm)机制融合的二进制蜂群算法.算法以二进制编码,首先依概率对任意两蜜源进行"去同存异"操作后随机排列,将排列结果放入到其中某个体中形成新个体.然后依概率进行二进制个体的"翻转"操作,上述两种操作从其本质上相当于GA的类交叉和类变异操作;其次利用GA机制收敛性的证明方式在理论上证明算法是收敛的.最后通过应用不同特性的多维基准函数和算法之间的比较验证改进蜂群算法具有良好的收敛能力和鲁棒性. 相似文献
14.
15.