首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a simple and effective hybrid (multiplicative) Schwarz precondtioner for solving systems of algebraic equations resulting from the mortar finite element discretization of second order elliptic problems on nonmatching meshes. The preconditioner is embedded in a variant of the classical preconditioned conjugate gradient (PCG) for an effective implementation reducing the cost of computing the matrix-vector multiplication in each iteration of the PCG. In fact, it serves as a framework for effective implementation of a class of hybrid Schwarz preconditioners. The preconditioners of this class are based on solving a sequence of non-overlapping local subproblems exactly, and the coarse problems either exactly or inexactly (approximately). The classical PCG algorithm is reformulated in order to make reuse of the results of matrix-vector multiplications that are already available from the preconditioning step resulting in an algorithm which is cost effective. An analysis of the proposed preconditioner, with numerical results, showing scalability with respect to the number of subdomains, and a convergence which is independent of the jumps of the coefficients are given.  相似文献   

2.
We discuss a class of preconditioning methods for the iterative solution of symmetric algebraic saddle point problems, where the (1, 1) block matrix may be indefinite or singular. Such problems may arise, e.g. from discrete approximations of certain partial differential equations, such as the Maxwell time harmonic equations. We prove that, under mild assumptions on the underlying problem, a class of block preconditioners (including block diagonal, triangular and symmetric indefinite preconditioners) can be chosen in a way which guarantees that the convergence rate of the preconditioned conjugate residuals method is independent of the discretization mesh parameter. We provide examples of such preconditioners that do not require additional scaling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Summary. In recent years, it has been shown that many modern iterative algorithms (multigrid schemes, multilevel preconditioners, domain decomposition methods etc.) for solving problems resulting from the discretization of PDEs can be interpreted as additive (Jacobi-like) or multiplicative (Gauss-Seidel-like) subspace correction methods. The key to their analysis is the study of certain metric properties of the underlying splitting of the discretization space into a sum of subspaces and the splitting of the variational problem on into auxiliary problems on these subspaces. In this paper, we propose a modification of the abstract convergence theory of the additive and multiplicative Schwarz methods, that makes the relation to traditional iteration methods more explicit. The analysis of the additive and multiplicative Schwarz iterations can be carried out in almost the same spirit as in the traditional block-matrix situation, making convergence proofs of multilevel and domain decomposition methods clearer, or, at least, more classical. In addition, we present a new bound for the convergence rate of the appropriately scaled multiplicative Schwarz method directly in terms of the condition number of the corresponding additive Schwarz operator. These results may be viewed as an appendix to the recent surveys [X], [Ys]. Received February 1, 1994 / Revised version received August 1, 1994  相似文献   

4.
Overlapping Schwarz preconditioners are constructed and numerically studied for Gauss-Lobatto-Legendre (GLL) spectral element discretizations of heterogeneous elliptic problems on nonstandard domains defined by Gordon-Hall transfinite mappings. The results of several test problems in the plane show that the proposed preconditioners retain the good convergence properties of overlapping Schwarz preconditioners for standard affine GLL spectral elements, i.e. their convergence rate is independent of the number of subdomains, of the spectral degree in the case of generous overlap and of the discontinuity jumps in the coefficients of the elliptic operator, while in the case of small overlap, the convergence rate depends on the inverse of the overlap size.  相似文献   

5.
6.
Optimized Schwarz methods form a class of domain decomposition methods for the solution of elliptic partial differential equations. When the subdomains are overlapping or nonoverlapping, these methods employ the optimal value of parameter(s) in the boundary condition along the artificial interface to accelerate its convergence. In the literature, the analysis of optimized Schwarz methods rely mostly on Fourier analysis and so the domains are restricted to be regular (rectangular). As in earlier papers, the interface operator can be expressed in terms of Poincaré–Steklov operators. This enables the derivation of an upper bound for the spectral radius of the interface operator on essentially arbitrary geometry. The problem of interest here is a PDE with a discontinuous coefficient across the artificial interface. We derive convergence estimates when the mesh size h along the interface is small and the jump in the coefficient may be large. We consider two different types of Robin transmission conditions in the Schwarz iteration: the first one leads to the best estimate when h is small, whereas for the second type, we derive a convergence estimate inversely proportional to the jump in the coefficient. This latter result improves upon the rate of popular domain decomposition methods such as the Neumann–Neumann method or FETI-DP methods, which was shown to be independent of the jump. In memory of Gene Golub.  相似文献   

7.
In this paper we construct and analyze new non-overlapping domain decomposition preconditioners for the solution of second-order elliptic and parabolic boundary value problems. The preconditioners are developed using uniform preconditioners on the subdomains instead of exact solves. They exhibit the same asymptotic condition number growth as the corresponding preconditioners with exact subdomain solves and are much more efficient computationally. Moreover, this asymptotic condition number growth is bounded independently of jumps in the operator coefficients across subdomain boundaries. We also show that our preconditioners fit into the additive Schwarz framework with appropriately chosen subspace decompositions. Condition numbers associated with the new algorithms are computed numerically in several cases and compared with those of the corresponding algorithms in which exact subdomain solves are used.

  相似文献   


8.
We present an analysis of multiplicative Schwarz methods for symmetric positive definite problems that is based on the theory of additive Schwarz preconditioners and discuss applications to multigrid methods and domain decomposition methods.  相似文献   

9.
The numerical solution of elliptic selfadjoint second-order boundary value problems leads to a class of linear systems of equations with symmetric, positive definite, large and sparse matrices which can be solved iteratively using a preconditioned version of some algorithm. Such differential equations originate from various applications such as heat conducting and electromagnetics. Systems of equations of similar type can also arise in the finite element analysis of structures. We discuss a recursive method constructing preconditioners to a symmetric, positive definite matrix. An algebraic multilevel technique based on partitioning of the matrix in two by two matrix block form, approximating some of these by other matrices with more simple sparsity structure and using the corresponding Schur complement as a matrix on the lower level, is considered. The quality of the preconditioners is improved by special matrix polynomials which recursively connect the preconditioners on every two adjoining levels. Upper and lower bounds for the degree of the polynomials are derived as conditions for a computational complexity of optimal order for each level and for an optimal rate of convergence, respectively. The method is an extended and more accurate algebraic formulation of a method for nine-point and mixed five- and nine-point difference matrices, presented in some previous papers.  相似文献   

10.
We present and analyze a preconditioner of the additive Schwarz type for the mortar boundary element method. As a basic splitting, on each subdomain we separate the degrees of freedom related to its boundary from the inner degrees of freedom. The corresponding wirebasket-type space decomposition is stable up to logarithmic terms. For the blocks that correspond to the inner degrees of freedom standard preconditioners for the hypersingular integral operator on open boundaries can be used. For the boundary and interface parts as well as the Lagrangian multiplier space, simple diagonal preconditioners are optimal. Our technique applies to quasi-uniform and non-uniform meshes of shape-regular elements. Numerical experiments on triangular and quadrilateral meshes confirm theoretical bounds for condition and MINRES iteration numbers.  相似文献   

11.
Summary. Multilevel preconditioners are proposed for the iterative solution of the discrete problems which arise when orthogonal spline collocation with piecewise Hermite bicubics is applied to the Dirichlet boundary value problem for a self-adjoint elliptic partial differential equation on a rectangle. Additive and multiplicative preconditioners are defined respectively as sums and products of independent operators on a sequence of nested subspaces of the fine partition approximation space. A general theory of additive and multiplicative Schwarz methods is used to prove that the preconditioners are spectrally equivalent to the collocation discretization of the Laplacian with the spectral constants independent of the fine partition stepsize and the number of levels. The preconditioned conjugate gradient and preconditioned Orthomin methods are considered for the solution of collocation problems. An implementation of the methods is discussed and the results of numerical experiments are presented. Received March 1, 1994 / Revised version received January 23, 1996  相似文献   

12.
Summary. We study some additive Schwarz algorithms for the version Galerkin boundary element method applied to some weakly singular and hypersingular integral equations of the first kind. Both non-overlapping and overlapping methods are considered. We prove that the condition numbers of the additive Schwarz operators grow at most as independently of h, where p is the degree of the polynomials used in the Galerkin boundary element schemes and h is the mesh size. Thus we show that additive Schwarz methods, which were originally designed for finite element discretisation of differential equations, are also efficient preconditioners for some boundary integral operators, which are non-local operators. Received June 15, 1997 / Revised version received July 7, 1998 / Published online February 17, 2000  相似文献   

13.
This paper deals with boundary‐value methods (BVMs) for ordinary and neutral differential‐algebraic equations. Different from what has been done in Lei and Jin (Lecture Notes in Computer Science, vol. 1988. Springer: Berlin, 2001; 505–512), here, we directly use BVMs to discretize the equations. The discretization will lead to a nonsymmetric large‐sparse linear system, which can be solved by the GMRES method. In order to accelerate the convergence rate of GMRES method, two Strang‐type block‐circulant preconditioners are suggested: one is for ordinary differential‐algebraic equations (ODAEs), and the other is for neutral differential‐algebraic equations (NDAEs). Under some suitable conditions, it is shown that the preconditioners are invertible, the spectra of the preconditioned systems are clustered, and the solution of iteration converges very rapidly. The numerical experiments further illustrate the effectiveness of the methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Chaouqui  F.  Gander  M. J.  Kumbhar  P. M.  Vanzan  T. 《Numerical Algorithms》2022,91(1):81-107

Iterative substructuring Domain Decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. It is less known that classical overlapping DD methods can also be formulated in substructured form, i.e., as iterative methods acting on variables defined exclusively on the interfaces of the overlapping domain decomposition. We call such formulations substructured domain decomposition methods. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS. We show that RAS and SRAS are equivalent when used as iterative solvers, as they produce the same iterates, while they are substantially different when used as preconditioners for GMRES. We link the volume and substructured Krylov spaces and show that the iterates are different by deriving the least squares problems solved at each GMRES iteration. When used as iterative solvers, SRAS presents computational advantages over RAS, as it avoids computations with matrices and vectors at the volume level. When used as preconditioners, SRAS has the further advantage of allowing GMRES to store smaller vectors and perform orthogonalization in a lower dimensional space. We then consider nonlinear problems, and we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton’s method. In contrast to the linear case, we prove that Newton’s method applied to the preconditioned volume and substructured formulation produces the same iterates in the nonlinear case. Next, we introduce two-level versions of nonlinear SRAS and SRASPEN. Finally, we validate our theoretical results with numerical experiments.

  相似文献   

15.
We give general expressions, analyze algebraic properties and derive eigenvalue bounds for a sequence of Toeplitz matrices associated with the sinc discretizations of various orders of differential operators. We demonstrate that these Toeplitz matrices can be satisfactorily preconditioned by certain banded Toeplitz matrices through showing that the spectra of the preconditioned matrices are uniformly bounded. In particular, we also derive eigenvalue bounds for the banded Toeplitz preconditioners. These results are elementary in constructing high-quality structured preconditioners for the systems of linear equations arising from the sinc discretizations of ordinary and partial differential equations, and are useful in analyzing algebraic properties and deriving eigenvalue bounds for the corresponding preconditioned matrices. Numerical examples are given to show effectiveness of the banded Toeplitz preconditioners.  相似文献   

16.
The Schwarz method can be used for the iterative solution of elliptic boundary value problems on a large domain Ω. One subdivides Ω into smaller, more manageable, subdomains and solves the differential equation in these subdomains using appropriate boundary conditions. Optimized Schwarz Methods use Robin conditions on the artificial interfaces for information exchange at each iteration, and for which one can optimize the Robin parameters. While the convergence theory of classical Schwarz methods (with Dirichlet conditions on the artificial interface) is well understood, the overlapping Optimized Schwarz Methods still lack a complete theory. In this paper, an abstract Hilbert space version of the Optimized Schwarz Method (OSM) is presented, together with an analysis of conditions for its geometric convergence. It is also shown that if the overlap is relatively uniform, these convergence conditions are met for Optimized Schwarz Methods for two-dimensional elliptic problems, for any positive Robin parameter. In the discrete setting, we obtain that the convergence factor ρ(h) varies like a polylogarithm of h. Numerical experiments show that the methods work well and that the convergence factor does not appear to depend on h.  相似文献   

17.
Optimized Schwarz methods form a class of domain decomposition methods for the solution of elliptic partial differential equations. Optimized Schwarz methods employ a first or higher order boundary condition along the artificial interface to accelerate convergence. In the literature, the analysis of optimized Schwarz methods relies on Fourier analysis and so the domains are restricted to be regular (rectangular). In this paper, we express the interface operator of an optimized Schwarz method in terms of Poincare-Steklov operators. This enables us to derive an upper bound of the spectral radius of the operator arising in this method of 1−O(h1/4) on a class of general domains, where h is the discretization parameter. This is the predicted rate for a second order optimized Schwarz method in the literature on rectangular subdomains and is also the observed rate in numerical simulations.  相似文献   

18.
This paper presents parallel preconditioners and multigrid solvers for solving linear systems of equations arising from stochastic polynomial chaos formulations of the diffusion equation with random coefficients. These preconditioners and solvers are extensions of the preconditioner developed in an earlier paper for strongly coupled systems of elliptic partial differential equations that are norm equivalent to systems that can be factored into an algebraic coupling component and a diagonal differential component. The first preconditioner, which is applied to the norm equivalent system, is obtained by sparsifying the inverse of the algebraic coupling component. This sparsification leads to an efficient method for solving these systems at the large scale, even for problems with large statistical variations in the random coefficients. An extension of this preconditioner leads to stand‐alone multigrid methods that can be applied directly to the actual system rather than to the norm equivalent system. These multigrid methods exploit the algebraic/differential factorization of the norm equivalent systems to produce variable‐decoupled systems on the coarse levels. Moreover, the structure of these methods allows easy software implementation through re‐use of robust high‐performance software such as the Hypre library package. Two‐grid matrix bounds will be established, and numerical results will be given. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Ciaramella  G.  Vanzan  T. 《Numerical Algorithms》2022,91(1):413-448

Two-level Schwarz domain decomposition methods are very powerful techniques for the efficient numerical solution of partial differential equations (PDEs). A two-level domain decomposition method requires two main components: a one-level preconditioner (or its corresponding smoothing iterative method), which is based on domain decomposition techniques, and a coarse correction step, which relies on a coarse space. The coarse space must properly represent the error components that the chosen one-level method is not capable to deal with. In the literature, most of the works introduced efficient coarse spaces obtained as the span of functions defined on the entire space domain of the considered PDE. Therefore, the corresponding two-level preconditioners and iterative methods are defined in volume. In this paper, we use the excellent smoothing properties of Schwarz domain decomposition methods to define, for general elliptic problems, a new class of substructured two-level methods, for which both Schwarz smoothers and coarse correction steps are defined on the interfaces (except for the application of the smoother that requires volumetric subdomain solves). This approach has several advantages. On the one hand, the required computational effort is cheaper than the one required by classical volumetric two-level methods. On the other hand, our approach does not require, like classical multi-grid methods, the explicit construction of coarse spaces, and it permits a multilevel extension, which is desirable when the high dimension of the problem or the scarce quality of the coarse space prevents the efficient numerical solution. Numerical experiments demonstrate the effectiveness of the proposed new numerical framework.

  相似文献   

20.
Two-level preconditioners for regularized inverse problems I: Theory   总被引:3,自引:0,他引:3  
Summary. We compare additive and multiplicative Schwarz preconditioners for the iterative solution of regularized linear inverse problems, extending and complementing earlier results of Hackbusch, King, and Rieder. Our main findings are that the classical convergence estimates are not useful in this context: rather, we observe that for regularized ill-posed problems with relevant parameter values the additive Schwarz preconditioner significantly increases the condition number. On the other hand, the multiplicative version greatly improves conditioning, much beyond the existing theoretical worst-case bounds. We present a theoretical analysis to support these results, and include a brief numerical example. More numerical examples with real applications will be given elsewhere. Received May 28, 1998 / Published online: July 7, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号