首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
The superconvergence phenomenon of the composite Simpson’s rule for the finite-part integral with a third-order singularity is studied. The superconvergence points are located and the superconvergence estimate is obtained. Some applications of the superconvergence result, including the evaluation of the finite-part integrals and the solution of a certain finite-part integral equation, are also discussed and two algorithms are suggested. Numerical experiments are presented to confirm the superconvergence analysis and to show the efficiency of the algorithms.  相似文献   

2.
We consider the general (composite) Newton-Cotes method for the computation of Cauchy principal value integrals and focus on its pointwise superconvergence phenomenon, which means that the rate of convergence of the Newton-Cotes quadrature rule is higher than what is globally possible when the singular point coincides with some a priori known point. The necessary and sufficient conditions satisfied by the superconvergence point are given. Moreover, the superconvergence estimate is obtained and the properties of the superconvergence points are investigated. Finally, some numerical examples are provided to validate the theoretical results.  相似文献   

3.
In this paper, we consider the time dependent Maxwell's equations in dispersive media on a bounded three-dimensional domain. Global superconvergence is obtained for semi-discrete mixed finite element methods for three most popular dispersive media models: the isotropic cold plasma, the one-pole Debye medium, and the two-pole Lorentz medium. Global superconvergence for a standard finite element method is also presented. To our best knowledge, this is the first superconvergence analysis obtained for Maxwell's equations when dispersive media are involved.

  相似文献   


4.
In this paper, we consider the superconvergence of a mixed covolume method on the quasi-uniform triangular grids for the variable coefficient-matrix Poisson equations. The superconvergence estimates between the solution of the mixed covolume method and that of the mixed finite element method have been obtained. With these superconvergence estimates, we establish the superconvergence estimates and the LL-error estimates for the mixed covolume method for the elliptic problems. Based on the superconvergence of the mixed covolume method, under the condition that the triangulation is uniform, we construct a post-processing method for the approximate velocity which improves the order of approximation of the approximate velocity.  相似文献   

5.
有限元超收敛新论   总被引:1,自引:0,他引:1  
朱起定  赵庆华 《数学进展》2004,33(4):453-466
本文从三个方面讨论二阶椭圆问题有限元超收敛.1.一致网格上的新超收敛结果.利用新的“投影型插值”,我们解决了高次三角形元的超收敛问题.2.一般网格的超收敛性.利用局部插值处理和局部磨光处理我们获得了整体超收敛性结果.3.关于当前的两种超收敛技巧.Cornell学派利用一个精致的内估计和网格的点对称性,获得了一个“普遍”的结果,中国学派利用两个基本估计和离散Green函数理论获得了令人满意的结果,两者均很复杂.本文综合了两个学派的方法,简洁地证得上述普遍结果.  相似文献   

6.
In this article, we investigate a local parallel superconvergence method by coarsening projection for the incompressible Stokes flow. The method is a combination of the local superconvergence technique and the given framework of local parallel method. For the smooth subdomains, the local superconvergence method is applied in a higher order finite dimensional space corresponding to an appropriate coarse mesh on interior domain. Moreover, a useful and flexible local parallel method is designed to obtain the local parallel superconvergence results of presented method, which offset theoretical limitation of the model without the smoothness of the exact solution and a priori regularity of the underlying problem over the whole domain. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1209–1223, 2015  相似文献   

7.
In this paper we analyse the local superconvergence propertiesof iterated piecewise polynomial collocation solutions for linearsecond-kind Volterra integral equations with (vanishing) proportionaldelays qt (0 < q < 1). It is shown that on suitable geometricmeshes depending on q, collocation at the Gauss points leadsto almost optimal superconvergence at the mesh points. Thiscontrasts with collocation on uniform meshes where the problemregarding the attainable order of local superconvergence remainsopen.  相似文献   

8.
给出线性有限元求解二阶椭圆问题的有限元网格超收敛测度及其应用.有限元超收敛经常是在具有一定结构的特殊网格条件下讨论的,而本文从一般网格出发,导出一种网格的范数用来描述超收敛所需要的网格条件以及超收敛的程度.并且通过对这种网格范数性质的考察,可以证明对于通常考虑的一些特殊网格的超收敛的存在性.更进一步,我们可以通过正则细分的方式在一般区域上也可以自动获得超收敛网格.最后给出相关的数值结果来验证本文的理论分析.  相似文献   

9.
The composite midpoint rule is probably the simplest one among the Newton-Cotes rules for Riemann integral. However, this rule is divergent in general for Hadamard finite-part integral. In this paper, we turn this rule to a useful one and, apply it to evaluate Hadamard finite-part integral as well as to solve the relevant integral equation. The key point is based on the investigation of its pointwise superconvergence phenomenon, i.e., when the singular point coincides with some a priori known point, the convergence rate of the midpoint rule is higher than what is globally possible. We show that the superconvergence rate of the composite midpoint rule occurs at the midpoint of each subinterval and obtain the corresponding superconvergence error estimate. By applying the midpoint rule to approximate the finite-part integral and by choosing the superconvergence points as the collocation points, we obtain a collocation scheme for solving the finite-part integral equation. More interesting is that the inverse of the coefficient matrix of the resulting linear system has an explicit expression, by which an optimal error estimate is established. Some numerical examples are provided to validate the theoretical analysis.  相似文献   

10.
A general superconvergence result of finite volume method for the Stokes equations is obtained by using a L2 projection post‐processing technique. This superconvergence result can be applied to different finite volume methods and to general quasi‐uniform meshes.© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号