首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
If A=(Aij)1?i,j?nB(X) is an upper triangular Banach space operator such that AiiAij=AijAjj for all 1?i?j?n, then A has SVEP or satisfies (Dunford's) condition (C) or (Bishop's) property (β) or (the decomposition) property (δ) if and only if Aii, 1?i?n, has the corresponding property.  相似文献   

2.
Let X be a Banach space and Z a nonempty subset of X. Let J:ZR be a lower semicontinuous function bounded from below and p?1. This paper is concerned with the perturbed optimization problem of finding z0Z such that ‖xz0p+J(z0)=infzZ{‖xzp+J(z)}, which is denoted by minJ(x,Z). The notions of the J-strictly convex with respect to Z and of the Kadec with respect to Z are introduced and used in the present paper. It is proved that if X is a Kadec Banach space with respect to Z and Z is a closed relatively boundedly weakly compact subset, then the set of all xX for which every minimizing sequence of the problem minJ(x,Z) has a converging subsequence is a dense Gδ-subset of X?Z0, where Z0 is the set of all points zZ such that z is a solution of the problem minJ(z,Z). If additionally p>1 and X is J-strictly convex with respect to Z, then the set of all xX for which the problem minJ(x,Z) is well-posed is a dense Gδ-subset of X?Z0.  相似文献   

3.
We give explicit constructions of sets S with the property that for each integer k, there are at most g solutions to k=s1+s2,siS; such sets are called Sidon sets if g=2 and generalized Sidon sets if g?3. We extend to generalized Sidon sets the Sidon-set constructions of Singer, Bose, and Ruzsa. We also further optimize Kolountzakis’ idea of interleaving several copies of a Sidon set, extending the improvements of Cilleruelo, Ruzsa and Trujillo, Jia, and Habsieger and Plagne. The resulting constructions yield the largest known generalized Sidon sets in virtually all cases.  相似文献   

4.
Let X be a Banach space and Z a nonempty closed subset of X. Let be an upper semicontinuous function bounded from above. This paper is concerned with the perturbed optimization problem supzZ{J(z)+‖xz‖}, which is denoted by (x,J)-sup. We shall prove in the present paper that if Z is a closed boundedly relatively weakly compact nonempty subset, then the set of all xX for which the problem (x,J)-sup has a solution is a dense Gδ-subset of X. In the case when X is uniformly convex and J is bounded, we will show that the set of all points x in X for which there does not exist z0Z such that J(z0)+‖xz0‖=supzZ{J(z)+‖xz‖} is a σ-porous subset of X and the set of all points xX?Z0 such that there exists a maximizing sequence of the problem (x,J)-sup which has no convergent subsequence is a σ-porous subset of X?Z0, where Z0 denotes the set of all zZ such that z is in the solution set of (z,J)-sup.  相似文献   

5.
Let G=(V,E) be a finite, simple and undirected graph. For SV, let δ(S,G)={(u,v)∈E:uS and vVS} be the edge boundary of S. Given an integer i, 1≤i≤|V|, let the edge isoperimetric value of G at i be defined as be(i,G)=minSV;|S|=i|δ(S,G)|. The edge isoperimetric peak of G is defined as be(G)=max1≤j≤|V|be(j,G). Let bv(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi:10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees.The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as ), and where c1, c2 are constants. For a complete t-ary tree of depth d (denoted as ) and dclogt where c is a constant, we show that and where c1, c2 are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T=(V,E,r) be a finite, connected and rooted tree — the root being the vertex r. Define a weight function w:VN where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index η(T) be defined as the number of distinct weights in the tree, i.e η(T)=|{w(u):uV}|. For a positive integer k, let ?(k)=|{iN:1≤i≤|V|,be(i,G)≤k}|. We show that .  相似文献   

6.
Maria Monks 《Discrete Mathematics》2009,309(16):5196-1883
All continuous endomorphisms f of the shift dynamical system S on the 2-adic integers Z2 are induced by some , where n is a positive integer, Bn is the set of n-blocks over {0, 1}, and f(x)=y0y1y2… where for all iN, yi=f(xixi+1xi+n−1). Define D:Z2Z2 to be the endomorphism of S induced by the map {(00,0),(01,1),(10,1),(11,0)} and V:Z2Z2 by V(x)=−1−x. We prove that D, V°D, S, and V°S are conjugate to S and are the only continuous endomorphisms of S whose parity vector function is solenoidal. We investigate the properties of D as a dynamical system, and use D to construct a conjugacy from the 3x+1 function T:Z2Z2 to a parity-neutral dynamical system. We also construct a conjugacy R from D to T. We apply these results to establish that, in order to prove the 3x+1 conjecture, it suffices to show that for any mZ+, there exists some nN such that R−1(m) has binary representation of the form or .  相似文献   

7.
The detour order of a graph G, denoted by τ(G), is the order of a longest path in G. A subset S of V(G) is called a Pn-kernel of G if τ(G[S])≤n−1 and every vertex vV(G)−S is adjacent to an end-vertex of a path of order n−1 in G[S]. A partition of the vertex set of G into two sets, A and B, such that τ(G[A])≤a and τ(G[B])≤b is called an (a,b)-partition of G. In this paper we show that any graph with girth g has a Pn+1-kernel for every . Furthermore, if τ(G)=a+b, 1≤ab, and G has girth greater than , then G has an (a,b)-partition.  相似文献   

8.
We introduce a frame cellular automaton as a broad generalization of an earlier study on quasigroup-defined cellular automata. It consists of a triple (F,R,EF) where, for a given finite set X of cells, the frame F is a family of subsets of X (called elementary frames, denoted Si, i=1,…,n), which is a cover of X. A matching configuration is a map which attributes to each cell a state in a finite set G under restriction of a set of local rules R={Rii=1,…n}, where Ri holds in the elementary frame Si and is determined by an (|Si|-1)-ary quasigroup over G. The frame associated map EF models how a matching configuration can be grown iteratively from a certain initial cell-set. General properties of frames and related matroids are investigated. A generating set SX is a set of cells such that there is a bijection between the collection of matching configurations and GS. It is shown that for certain frames, the algebraically defined generating sets are bases of a related geometric-combinatorially defined matroid.  相似文献   

9.
A nonincreasing sequence of nonnegative integers π=(d1,d2,…,dn) is graphic if there is a (simple) graph G of order n having degree sequence π. In this case, G is said to realizeπ. For a given graph H, a graphic sequence π is potentiallyH-graphic if there is some realization of π containing H as a (weak) subgraph. Let σ(π) denote the sum of the terms of π. For a graph H and nZ+, σ(H,n) is defined as the smallest even integer m so that every n-term graphic sequence π with σ(π)≥m is potentially H-graphic. Let denote the complete t partite graph such that each partite set has exactly s vertices. We show that and obtain the exact value of σ(Kj+Ks,s,n) for n sufficiently large. Consequently, we obtain the exact value of for n sufficiently large.  相似文献   

10.
Let G be a graph and d(u) denote the degree of a vertex u in G. The zeroth-order general Randi? index 0Rα(G) of the graph G is defined as ∑uV(G)d(u)α, where the summation goes over all vertices of G and α is an arbitrary real number. In this paper we correct the proof of the main Theorem 3.5 of the paper by Hu et al. [Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randi? index, Discrete Appl. Math. 155 (8) (2007) 1044-1054] and give a more general Theorem. We finally characterize 1 for α<0 the connected G(n,m)-graphs with maximum value 0Rα(G(n,m)), where G(n,m) is a simple connected graph with n vertices and m edges.  相似文献   

11.
For aj,bj?1, j=1,2,…,d, we prove that the operator maps into itself for , where , and k(x,y)=φ(x,y)eig(x,y), φ(x,y) satisfies (1.2) (e.g. φ(x,y)=|xy|iτ,τ real) and the phase g(x,y)=xayb. We study operators with more general phases and for these operators we require that aj,bj>1, j=1,2,…,d, or al=bl?1 for some l∈{1,2,…,d}.  相似文献   

12.
Pavol Hell 《Discrete Mathematics》2009,309(18):5703-5373
A sequence 〈d1,d2,…,dn〉 of non-negative integers is graphical if it is the degree sequence of some graph, that is, there exists a graph G on n vertices whose ith vertex has degree di, for 1≤in. The notion of a graphical sequence has a natural reformulation and generalization in terms of factors of complete graphs.If H=(V,E) is a graph and g and f are integer-valued functions on the vertex set V, then a (g,f)-factor of H is a subgraph G=(V,F) of H whose degree at each vertex vV lies in the interval [g(v),f(v)]. Thus, a (0,1)-factor is just a matching of H and a (1, 1)-factor is a perfect matching of H. If H is complete then a (g,f)-factor realizes a degree sequence that is consistent with the sequence of intervals 〈[g(v1),f(v1)],[g(v2),f(v2)],…,[g(vn),f(vn)]〉.Graphical sequences have been extensively studied and admit several elegant characterizations. We are interested in extending these characterizations to non-graphical sequences by introducing a natural measure of “near-graphical”. We do this in the context of minimally deficient (g,f)-factors of complete graphs. Our main result is a simple linear-time greedy algorithm for constructing minimally deficient (g,f)-factors in complete graphs that generalizes the method of Hakimi and Havel (for constructing (f,f)-factors in complete graphs, when possible). It has the added advantage of producing a certificate of minimum deficiency (through a generalization of the Erdös-Gallai characterization of (f,f)-factors in complete graphs) at no additional cost.  相似文献   

13.
Xianwei Sun 《Discrete Mathematics》2009,309(10):2982-2270
In this paper, we investigate the existence of resolvable group divisible designs (RGDDs) with block size four, group-type hn and general index λ. The necessary conditions for the existence of such a design are n≥4, and . These necessary conditions are shown to be sufficient for all λ≥2, with the definite exceptions of (λ,h,n)∈{(3,2,6)}∪{(2j+1,2,4):j≥1}. The known existence result for λ=1 is also improved.  相似文献   

14.
Recently, Sloane suggested the following problem: We are given n boxes, labeled 1,2,…,n. For i=1,…,n, box i weighs (m-1)i grams (where m?2 is a fixed integer) and box i can support a total weight of i grams. What is the number of different ways to build a single stack of boxes in which no box will be squashed by the weight of the boxes above it? Prior to this generalized problem, Sloane and Sellers solved the case m=2. More recently, Andrews and Sellers solved the case m?3. In this note we give new and simple proofs of the results of Sloane and Sellers and of Andrews and Sellers, using a known connection with m-ary partitions.  相似文献   

15.
In recent papers (cf. [J.L. Arregui, O. Blasco, (p,q)-Summing sequences, J. Math. Anal. Appl. 274 (2002) 812-827; J.L. Arregui, O. Blasco, (p,q)-Summing sequences of operators, Quaest. Math. 26 (2003) 441-452; S. Aywa, J.H. Fourie, On summing multipliers and applications, J. Math. Anal. Appl. 253 (2001) 166-186; J.H. Fourie, I. Röntgen, Banach space sequences and projective tensor products, J. Math. Anal. Appl. 277 (2) (2003) 629-644]) the concept of (p,q)-summing multiplier was considered in both general and special context. It has been shown that some geometric properties of Banach spaces and some classical theorems can be described using spaces of (p,q)-summing multipliers. The present paper is a continuation of this study, whereby multiplier spaces for some classical Banach spaces are considered. The scope of this research is also broadened, by studying other classes of summing multipliers. Let E(X) and F(Y) be two Banach spaces whose elements are sequences of vectors in X and Y, respectively, and which contain the spaces c00(X) and c00(Y) of all X-valued and Y-valued sequences which are eventually zero, respectively. Generally spoken, a sequence of bounded linear operators (un)⊂L(X,Y) is called a multiplier sequence from E(X) to F(Y) if the linear operator from c00(X) into c00(Y) which maps (xi)∈c00(X) onto (unxn)∈c00(Y) is bounded with respect to the norms on E(X) and F(Y), respectively. Several cases where E(X) and F(Y) are different (classical) spaces of sequences, including, for instance, the spaces Rad(X) of almost unconditionally summable sequences in X, are considered. Several examples, properties and relations among spaces of summing multipliers are discussed. Important concepts like R-bounded, semi-R-bounded and weak-R-bounded from recent papers are also considered in this context.  相似文献   

16.
Let m(n,k,r,t) be the maximum size of satisfying |F1∩?∩Fr|≥t for all F1,…,FrF. We prove that for every p∈(0,1) there is some r0 such that, for all r>r0 and all t with 1≤t≤⌊(p1−rp)/(1−p)⌋−r, there exists n0 so that if n>n0 and p=k/n, then . The upper bound for t is tight for fixed p and r.  相似文献   

17.
For any partition λ let ω(λ) denote the four parameter weight
ω(λ)=ai≥1λ2i−1/2⌉bi≥1λ2i−1/2⌋ci≥1λ2i/2⌉di≥1λ2i/2⌋,  相似文献   

18.
In this paper, we investigate the existence of resolvable group divisible designs (RGDDs) with block size four, group-type hn and index three. The necessary conditions for the existence of such a design are n?4 and hn≡0. These necessary conditions are shown to be sufficient except for (h,n)∈{(2,4),(2,6)} and possibly excepting (h,n)=(2,54).  相似文献   

19.
We prove that II1 factors M have a unique (up to unitary conjugacy) cross-product type decomposition around “core subfactors” NM satisfying the property HT of [S. Popa, On a class of type II1 factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006) 809-899] and a certain “torsion freeness” condition. In particular, this shows that isomorphism of factors of the form Lαi(Z2)?Fni, i=1,2, for FniSL(2,Z) free groups of rank ni and αj=e2πitj, tjQ, implies n1=n2.  相似文献   

20.
The geodesic interval function I of a connected graph allows an axiomatic characterization involving axioms on the function only, without any reference to distance, as was shown by Nebeský [20]. Surprisingly, Nebeský [23] showed that, if no further restrictions are imposed, the induced path function J of a connected graph G does not allow such an axiomatic characterization. Here J(u,v) consists of the set of vertices lying on the induced paths between u and v. This function is a special instance of a transit function. In this paper we address the question what kind of restrictions could be imposed to obtain axiomatic characterizations of J. The function J satisfies betweenness if wJ(u,v), with wu, implies uJ(w,v) and xJ(u,v) implies J(u,x)⊆J(u,v). It is monotone if x,yJ(u,v) implies J(x,y)⊆J(u,v). In the case where we restrict ourselves to functions J that satisfy betweenness, or monotonicity, we are able to provide such axiomatic characterizations of J by transit axioms only. The graphs involved can all be characterized by forbidden subgraphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号