首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
If L(G) is the line graph of G, and A(L(G)), the adjacency matrix of L(G), acts on a vector x, this vector may be thought of as an integral chain of G. The eigenspace of L(G) determines a matroid for G. For the eigenvalue ?2, this matroid has a geometric interpretation, and from this we obtain all eigenvectors corresponding to this eigenvalue. Matroids are normally considered over integral domains, and the results for eigenvectors are generalized to a geometric interpretation for all integral domains. These results are applied to the ring of complex numbers, and strict bounds for the least eigenvalue of a line graph are obtained.  相似文献   

2.
The least eigenvalue of graphs with given connectivity   总被引:2,自引:0,他引:2  
Let G be a simple graph and A(G) be the adjacency matrix of G. The eigenvalues of G are those of A(G). In this paper, we characterize the graphs with the minimal least eigenvalue among all graphs of fixed order with given vertex connectivity or edge connectivity.  相似文献   

3.
Using the result on Fiedler vectors of a simple graph, we obtain a property on the structure of the eigenvectors of a nonsingular unicyclic mixed graph corresponding to its least eigenvalue. With the property, we get some results on minimizing and maximizing the least eigenvalue over all nonsingular unicyclic mixed graphs on n vertices with fixed girth. In particular, the graphs which minimize and maximize, respectively, the least eigenvalue are given over all such graphs with girth 3.  相似文献   

4.
Let U(n,d) be the set of unicyclic graphs on n vertices with diameter d. In this article, we determine the unique graph with minimal least eigenvalue among all graphs in U(n,d). It is found that the extremal graph is different from that for the corresponding problem on maximal eigenvalue as done by Liu et al. [H.Q. Liu, M. Lu, F. Tian, On the spectral radius of unicyclic graphs with fixed diameter, Linear Algebra Appl. 420 (2007) 449-457].  相似文献   

5.
The spectral spread of a graph is defined to be the difference between the largest and the least eigenvalue of the adjacency matrix of the graph. A graph G is said to be bicyclic, if G is connected and |E(G)| = |V(G)|+ 1. Let B(n, g) be the set of bicyclic graphs on n vertices with girth g. In this paper some properties about the least eigenvalues of graphs are given, by which the unique graph with maximal spectral spread in B(n, g) is determined.  相似文献   

6.
We generalize a theorem of Knuth relating the oriented spanning trees of a directed graph G and its directed line graph LG. The sandpile group is an abelian group associated to a directed graph, whose order is the number of oriented spanning trees rooted at a fixed vertex. In the case when G is regular of degree k, we show that the sandpile group of G is isomorphic to the quotient of the sandpile group of LG by its k-torsion subgroup. As a corollary we compute the sandpile groups of two families of graphs widely studied in computer science, the de Bruijn graphs and Kautz graphs.  相似文献   

7.
Gutman et al. introduced the concepts of energy E(G) and Laplacian energy EL(G) for a simple graph G, and furthermore, they proposed a conjecture that for every graph G, E(G) is not more than EL(G). Unfortunately, the conjecture turns out to be incorrect since Liu et al. and Stevanovi? et al. constructed counterexamples. However, So et al. verified the conjecture for bipartite graphs. In the present paper, we obtain, for a random graph, the lower and upper bounds of the Laplacian energy, and show that the conjecture is true for almost all graphs.  相似文献   

8.
On the Laplacian spectral radii of bicyclic graphs   总被引:1,自引:0,他引:1  
A graph G of order n is called a bicyclic graph if G is connected and the number of edges of G is n+1. Let B(n) be the set of all bicyclic graphs on n vertices. In this paper, we obtain the first four largest Laplacian spectral radii among all the graphs in the class B(n) (n≥7) together with the corresponding graphs.  相似文献   

9.
《Discrete Mathematics》2002,231(1-3):311-318
An L(2,1)-labeling of graph G is an integer labeling of the vertices in V(G) such that adjacent vertices receive labels which differ by at least two, and vertices which are distance two apart receive labels which differ by at least one. The λ-number of G is the minimum span taken over all L(2,1)-labelings of G. In this paper, we consider the λ-numbers of generalized Petersen graphs. By introducing the notion of a matched sum of graphs, we show that the λ-number of every generalized Petersen graph is bounded from above by 9. We then show that this bound can be improved to 8 for all generalized Petersen graphs with vertex order >12, and, with the exception of the Petersen graph itself, improved to 7 otherwise.  相似文献   

10.
Motivated by studying the spectra of truncated polyhedra, we consider the clique-inserted-graphs. For a regular graph G of degree r>0, the graph obtained by replacing every vertex of G with a complete graph of order r is called the clique-inserted-graph of G, denoted as C(G). We obtain a formula for the characteristic polynomial of C(G) in terms of the characteristic polynomial of G. Furthermore, we analyze the spectral dynamics of iterations of clique-inserting on a regular graph G. For any r-regular graph G with r>2, let S(G) denote the union of the eigenvalue sets of all iterated clique-inserted-graphs of G. We discover that the set of limit points of S(G) is a fractal with the maximum r and the minimum −2, and that the fractal is independent of the structure of the concerned regular graph G as long as the degree r of G is fixed. It follows that for any integer r>2 there exist infinitely many connected r-regular graphs (or, non-regular graphs with r as the maximum degree) with arbitrarily many distinct eigenvalues in an arbitrarily small interval around any given point in the fractal. We also present a formula on the number of spanning trees of any kth iterated clique-inserted-graph and other related results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号