首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider generalized potential games, that constitute a fundamental subclass of generalized Nash equilibrium problems. We propose different methods to compute solutions of generalized potential games with mixed-integer variables, i.e., games in which some variables are continuous while the others are discrete. We investigate which types of equilibria of the game can be computed by minimizing a potential function over the common feasible set. In particular, for a wide class of generalized potential games, we characterize those equilibria that can be computed by minimizing potential functions as Pareto solutions of a particular multi-objective problem, and we show how different potential functions can be used to select equilibria. We propose a new Gauss–Southwell algorithm to compute approximate equilibria of any generalized potential game with mixed-integer variables. We show that this method converges in a finite number of steps and we also give an upper bound on this number of steps. Moreover, we make a thorough analysis on the behaviour of approximate equilibria with respect to exact ones. Finally, we make many numerical experiments to show the viability of the proposed approaches.  相似文献   

2.
Potential games are noncooperative games for which there exist auxiliary functions, called potentials, such that the maximizers of the potential are also Nash equilibria of the corresponding game. Some properties of Nash equilibria, such as existence or stability, can be derived from the potential, whenever it exists. We survey different classes of potential games in the static and dynamic cases, with a finite number of players, as well as in population games where a continuum of players is allowed. Likewise, theoretical concepts and applications are discussed by means of illustrative examples.  相似文献   

3.
Multi-leader multi-follower games are a class of hierarchical games in which a collection of leaders compete in a Nash game constrained by the equilibrium conditions of another Nash game amongst the followers. The resulting equilibrium problem with equilibrium constraints is complicated by nonconvex agent problems and therefore providing tractable conditions for existence of global or even local equilibria has proved challenging. Consequently, much of the extant research on this topic is either model specific or relies on weaker notions of equilibria. We consider a modified formulation in which every leader is cognizant of the equilibrium constraints of all leaders. Equilibria of this modified game contain the equilibria, if any, of the original game. The new formulation has a constraint structure called shared constraints, and our main result shows that if the leader objectives admit a potential function, the global minimizers of the potential function over this shared constraint are equilibria of the modified formulation. We provide another existence result using fixed point theory that does not require potentiality. Additionally, local minima, B-stationary, and strong-stationary points of this minimization problem are shown to be local Nash equilibria, Nash B-stationary, and Nash strong-stationary points of the corresponding multi-leader multi-follower game. We demonstrate the relationship between variational equilibria associated with this modified shared-constraint game and equilibria of the original game from the standpoint of the multiplier sets and show how equilibria of the original formulation may be recovered. We note through several examples that such potential multi-leader multi-follower games capture a breadth of application problems of interest and demonstrate our findings on a multi-leader multi-follower Cournot game.  相似文献   

4.
5.
Hierarchical potential games with infinite strategy sets are considered. For these games, pessimistic Stackelberg equilibria are characterized as minimum points of the potential function; properties are studied and illustrated with examples.  相似文献   

6.
We analyze a class of two-candidate voter participation games under complete information that encompasses as special cases certain public good provision games. We characterize the Nash equilibria of these games as stationary points of a non-linear programming problem, the objective function of which is a Morse function (onethat does not admit degenerate critical points) for almost all costs of participation. We use this fact to establish that, outside a closed set of measure zero of participation costs, all equilibria of these games are regular (an alternative to the result of De Sinopoli and Iannantuoni in Econ Theory 25(2):477–486, 2005). One consequence of regularity is that the equilibria of these games are robust to the introduction of (mild) incomplete information. Finally, we establish the existence of monotone Nash equilibria, such that players with higher participation cost abstain with (weakly) higher probability.   相似文献   

7.
《Optimization》2012,61(4):571-579
The aim of this article is to study potential games which are a special class of games, in fact their properties are dictated by a single function called the potential function. We consider Tikhonov well-posedness and other well-posedness properties introduced by the authors in Margiocco et al. (Margiocco, M., Patrone, F. and Pusillo Chicco, L., 1997, A new approach to Tikhonov well–posedness for Nash equilibria. Optimization, 40, 385–400) Margiocco and Pusillo (Margiocco, M. and Pusillo, L., Value bounded approximations for Nash equilibria, Preprint, Submitted). We relate these properties with the Tikhonov well posedness of the potential function as maximum problem.  相似文献   

8.
The stability of Nash equilibria against the perturbation of the right-hand side functions of state equations for noncooperative differential games is investigated. By employing the set-valued analysis theory, we show that the differential games whose equilibria are all stable form a dense residual set, and every differential game can be approximated arbitrarily by a sequence of stable differential games, that is, in the sense of Baire’s category most of the differential games are stable.  相似文献   

9.
对一类不连续的博弈证明了轻微利他平衡点存在且对这些不连续博弈,如果本质平衡点存在,则他们必是轻微利他平衡点,进而证明了大多数博弈(在Baire分类意义上)是轻微利他的,即它的所有平衡点都是轻微利他的.  相似文献   

10.
The Nash equilibrium in pure strategies represents an important solution concept in nonzero sum matrix games. Existence of Nash equilibria in games with known and with randomly selected payoff entries have been studied extensively. In many real games, however, a player may know his own payoff entries but not the payoff entries of the other player. In this paper, we consider nonzero sum matrix games where the payoff entries of one player are known, but the payoff entries of the other player are assumed to be randomly selected. We are interested in determining the probabilities of existence of pure Nash equilibria in such games. We characterize these probabilities by first determining the finite space of ordinal matrix games that corresponds to the infinite space of matrix games with random entries for only one player. We then partition this space into mutually exclusive spaces that correspond to games with no Nash equilibria and with r Nash equilibria. In order to effectively compute the sizes of these spaces, we introduce the concept of top-rated preferences minimal ordinal games. We then present a theorem which provides a mechanism for computing the number of games in each of these mutually exclusive spaces, which then can be used to determine the probabilities. Finally, we summarize the results by deriving the probabilities of existence of unique, nonunique, and no Nash equilibria, and we present an illustrative example.  相似文献   

11.
We introduce a new class of games, congestion games with failures (CGFs), which allows for resource failures in congestion games. In a CGF, players share a common set of resources (service providers), where each service provider (SP) may fail with some known probability (that may be constant or depend on the congestion on the resource). For reliability reasons, a player may choose a subset of the SPs in order to try and perform his task. The cost of a player for utilizing any SP is a function of the total number of players using this SP. A main feature of this setting is that the cost for a player for successful completion of his task is the minimum of the costs of his successful attempts. We show that although CGFs do not, in general, admit a (generalized ordinal) potential function and the finite improvement property (and thus are not isomorphic to congestion games), they always possess a pure strategy Nash equilibrium. Moreover, every best reply dynamics converges to an equilibrium in any given CGF, and the SPs’ congestion experienced in different equilibria is (almost) unique. Furthermore, we provide an efficient procedure for computing a pure strategy equilibrium in CGFs and show that every best equilibrium (one minimizing the sum of the players’ disutilities) is semi-strong. Finally, for the subclass of symmetric CGFs we give a constructive characterization of best and worst equilibria.  相似文献   

12.
We show that obtainable equilibria of a multi-period nonatomic game can be used by players in its large finite counterparts to achieve near-equilibrium payoffs. Such equilibria in the form of random state-to-action rules are parsimonious in form and easy to execute, as they are both oblivious of past history and blind to other players’ present states. Our transient results can be extended to a stationary case, where the finite multi-period games are special discounted stochastic games. In both nonatomic and finite games, players’ states influence their payoffs along with actions they take; also, the random evolution of one particular player’s state is driven by all players’ states as well as actions. The finite games can model diverse situations such as dynamic price competition. But they are notoriously difficult to analyze. Our results thus suggest ways to tackle these problems approximately.  相似文献   

13.
Robust Equilibria in Indefinite Linear-Quadratic Differential Games   总被引:1,自引:0,他引:1  
Equilibria in dynamic games are formulated often under the assumption that the players have full knowledge of the dynamics to which they are subject. Here, we formulate equilibria in which players are looking for robustness and take model uncertainty explicitly into account in their decisions. Specifically, we consider feedback Nash equilibria in indefinite linear-quadratic differential games on an infinite time horizon. Model uncertainty is represented by a malevolent input which is subject to a cost penalty or to a direct bound. We derive conditions for the existence of robust equilibria in terms of solutions of sets of algebraic Riccati equations.  相似文献   

14.
15.
We study the connection between biobjective mixed integer linear programming and normal form games with two players. We first investigate computing Nash equilibria of normal form games with two players using single-objective mixed integer linear programming. Then, we define the concept of efficient (Pareto optimal) Nash equilibria. This concept is precisely equivalent to the concept of efficient solutions in multi-objective optimization, where the solutions are Nash equilibria. We prove that the set of all points in the payoff (or objective) space of a normal form game with two players corresponding to the utilities of players in an efficient Nash equilibrium, the so-called nondominated Nash points, is finite. We demonstrate that biobjective mixed integer linear programming, where the utility of each player is an objective function, can be used to compute the set of nondominated Nash points. Finally, we illustrate how the nondominated Nash points can be used to determine the disagreement point of a bargaining problem.  相似文献   

16.
We study a class of finite strategic games with the property that every deviation of a coalition of players that is profitable to each of its members strictly decreases the lexicographical order of a certain function defined on the set of strategy profiles. We call this property the lexicographical improvement property (LIP) and show that, in finite games, it is equivalent to the existence of a generalized strong potential function. We use this characterization to derive existence, efficiency and fairness properties of strong equilibria (SE). As our main result, we show that an important class of games that we call bottleneck congestion games has the LIP and thus the above mentioned properties. For infinite games, the LIP does neither imply the existence of a generalized strong potential nor the existence of SE. We therefore introduce the slightly more general concept of the pairwise LIP and prove that whenever the pairwise LIP is satisfied for a continuous function, then there exists a SE. As a consequence, we show that splittable bottleneck congestion games with continuous facility cost functions possess a SE.  相似文献   

17.
We exhibit the rich structure of the set of correlated equilibria by analyzing the simplest of polynomial games: the mixed extension of matching pennies. We show that while the correlated equilibrium set is convex and compact, the structure of its extreme points can be quite complicated. In finite games the ratio of extreme correlated to extreme Nash equilibria can be greater than exponential in the size of the strategy spaces. In polynomial games there can exist extreme correlated equilibria which are not finitely supported; we construct a large family of examples using techniques from ergodic theory. We show that in general the set of correlated equilibrium distributions of a polynomial game cannot be described by conditions on finitely many moments (means, covariances, etc.), in marked contrast to the set of Nash equilibria which is always expressible in terms of finitely many moments.  相似文献   

18.
Bottleneck congestion games properly model the properties of many real-world network routing applications. They are known to possess strong equilibria—a strengthening of Nash equilibrium to resilience against coalitional deviations. In this paper, we study the computational complexity of pure Nash and strong equilibria in these games. We provide a generic centralized algorithm to compute strong equilibria, which has polynomial running time for many interesting classes of games such as, e.g., matroid or single-commodity bottleneck congestion games. In addition, we examine the more demanding goal to reach equilibria in polynomial time using natural improvement dynamics. Using unilateral improvement dynamics in matroid games pure Nash equilibria can be reached efficiently. In contrast, computing even a single coalitional improvement move in matroid and single-commodity games is strongly NP-hard. In addition, we establish a variety of hardness results and lower bounds regarding the duration of unilateral and coalitional improvement dynamics. They continue to hold even for convergence to approximate equilibria.  相似文献   

19.
In this paper, we study nonzero-sum separable games, which are continuous games whose payoffs take a sum-of-products form. Included in this subclass are all finite games and polynomial games. We investigate the structure of equilibria in separable games. We show that these games admit finitely supported Nash equilibria. Motivated by the bounds on the supports of mixed equilibria in two-player finite games in terms of the ranks of the payoff matrices, we define the notion of the rank of an n-player continuous game and use this to provide bounds on the cardinality of the support of equilibrium strategies. We present a general characterization theorem that states that a continuous game has finite rank if and only if it is separable. Using our rank results, we present an efficient algorithm for computing approximate equilibria of two-player separable games with fixed strategy spaces in time polynomial in the rank of the game. This research was funded in part by National Science Foundation grants DMI-0545910 and ECCS-0621922 and AFOSR MURI subaward 2003-07688-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号