首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
我们考虑了一类原型为$$\begin{cases}u_t-\Delta u=\overrightarrow{b}(x,t)\cdot\nabla u+\gamma|\nabla u|^2-\text{div}{\overrightarrow{F}(x,t)}+f(x,t), &(x,t)\in \Omega_T,\\ u(x,t)=0,&(x,t)\in\Gamma_T,\\ u(x,0)=u_0(x), &x\in\Omega,\end{cases}$$的一类抛物方程. 其中, 函数$|\overrightarrow{b}(x,t)|^2,|\overrightarrow{F}(x,t)|^2,f(x,t)$位于空间$L^r{(0,T;L^q(\Omega))}$, $\gamma$是一个正常数. 在源项和梯度的系数项在空间$L^r{(0,T;L^q(\Omega))}$具有合适的可积条件下, 本文的目的在于证明先验的$L^\infty$估计以及方程存在有界解. 主要的方法包括通过正则化建立扰动问题, 用非线性的检验函数实现Stampacchia迭代技术以及极限过程中的紧性论断.  相似文献   

2.
刘名生  朱玉灿 《中国科学A辑》2007,37(10):1193-1206
在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在C~n中的有界完全Reinhardt域Ω上推广的Roper-Suffridge算子Φ(f)定义为Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)(z)=(rf(z_1/r),((rf(z_1/r))/z_1)~(β_2)(f′(z_1/r))~γ_2_(z_2,…,)((rf(z_1/r))/z_1)~(β_n)(f′(z_1/r))~(γ_n)_(z_n),其中n≥2,(z_1,z_2,…,z_n)∈Ω,r=r(Ω)=sup{|z_1|:(z_1,z_2,…,z_n)∈Ω},0≤γ_j≤1-β_j,0≤β_j≤1,这里选取幂函数的单值解析分支,使得((f(z_1))/z_1)~(β_j)|_(z_1=0)=1和(f′(z_1))~(γ_j)|_(z_1=0)=1,j= 2,…,n.证明了Ω上的算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)是将S_α~*(U)的子集映入S_α~*(Ω)(0≤α<1),且对于一些合适的常数β_j,γ_j,p_j,D_p上的这个算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)保持α阶星形性或保持β型螺形性,其中(?) U是复平面C上的单位圆,S_α~*(Ω)是Ω上所有正规化α阶星形映射所成的类.也得到:对于某些合适的常数β_j,γ_j,p_j和0≤α<1,Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)∈S_α~*(D_p)当且仅当f∈S_α~*(U).  相似文献   

3.
本文研究了多元线性模型当未知参数受不完全椭球约束$\mbox{tr}(\Theta-\Theta_1)'N(\Theta-\Theta_1)\leq\sigma^2$时线性估计的可容许性问题.具体而言,我们研究了约束$\mbox{tr}(\Theta-\Theta_1)'N(\Theta-\Theta_1)\leq\sigma^2$中$N$和非中心点$\Theta_1$对线性估计的可容许性的影响.主要结果表明在两个不同的不完全椭球约束条件$\mbox{tr}(\Theta-\Theta_1)'N(\Theta-\Theta_1)\leq\sigma^2$与$\mbox{tr}(\Theta-\Theta_2)'N(\Theta-\Theta_2)\leq\sigma^2$ 下,当$\Theta_1$和$\Theta_2$满足一定的关系时,可容许的齐次线性估计类是相同的.  相似文献   

4.
本文在无边界流的光滑有界区域$\Omega\subset\mathbb{R}^n~(n>2)$上研究了具有奇异灵敏度及logistic源的抛物-椭圆趋化系统$$\left\{\begin{array}{ll}u_t=\Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+r u-\mu u^k,&x\in\Omega,\,t>0,\\ 0=\Delta v-v+u,&x\in\Omega,\,t>0\end{array}\right.$$ 其中$\chi$, $r$, $\mu>0$, $k\geq2$. 证明了若当$r$适当大, 则当$t\rightarrow\infty$时该趋化系统全局有界解呈指数收敛于$((\frac{r}{\mu})^{\frac{1}{k-1}}, (\frac{r}{\mu})^{\frac{1}{k-1}})$.  相似文献   

5.
设$D$是$R^N$ ($N>1$)中有界开集,$(\Omega, {\cal F}, P)$是一个完备的概率空间.该文研究了下列随机边值问题弱解的存在性问题\[\left\{\begin{array}{ll}-{\rm div} A(x,\omega,u, \nabla u)=f(x,\omega, u),\,\, &;(x,\omega)\in D\times \Omega,\\u=0, &;(x,\omega)\in \partial D\times \Omega,\end{array}\right.\]其中, div与 $\nabla $ 表示仅对 $x$求微分. 首先,作者引入了弱解的概念; 然后,作者转化随机问题为高维确定性问题;最后,作者证明了该问题弱解的存在性.  相似文献   

6.
本文给出了强正则$(\alpha,\beta)-$族的概念,它是[4]和[5]中$SPG-$族概念的推广.进一步,给出了一种用强正则 $(\alpha,\beta)-$族构造强正则$(\alpha,\beta)-$几何的方法.另外,本文还证明了由强正则$(\alpha,\beta)-$线汇构造的强正则$(\alpha,\beta)-$几何是平移强正则$(\alpha,\beta)-$几何;当$t-r>\beta$时,反之亦成立.  相似文献   

7.
本文主要研究如下含非线性梯度项的非强制拟线性椭圆方程\begin{equation*}\left \{\begin{array}{rl}-\text{div}(\frac{|\nabla u|^{p-2}\nabla u}{(1+|u|)^{\theta(p-1)}})+\frac{|u|^{p-2}u|\nabla u|^{p}}{(1+|u|)^{\theta p}}=\mu,~&x\in\Omega,\\ u=0,~&x\in\partial\Omega,\end{array}\right.\end{equation*} 弱解的存在性和不存在性, 其中$\Omega\subseteq\mathbb{R}^N(N\geq3)$ 是有界光滑区域, $1相似文献   

8.
我们证明了本征平方函数及其交换子在Herz空间$\dot{K}_{q(\cdot)}^{\alpha(\cdot), p),\theta}({\Bbb{R}}^n)$空间上的有界性,其中$\alpha$, $q$均为变指数。当$\alpha(\cdot)\equiv \alpha$为常数时,所得结果也是新的.  相似文献   

9.
在本文中, 作者继续讨论涉及分担超平面的全纯曲线的正规性, 得到了如下结果:设$\mathcal F$是一族从区域$D\subset\mathbb C$到$\mathbb P^N(\mathbb C)$上的全纯曲线,$H_j=\{x\in\mathbb P^N(\mathbb C):\langle\bm{x},\alpha_j\rangle=0\}$是$\mathbb P^N(\mathbb C)$中处于一般位置的超平面, 这里$\alpha_j=(a_{j0},\cdots,a_{jN})^{\rm T}$且$a_{j0}\ne0$, $j=1,2,\cdots,2N+1$.若对于任意的$f\in\mathcal F$, 满足下列两个条件:(i) 如果$f(z)\in H_j$, 那么$\nabla f\in H_j$, 这里$j=1,2,\cdots,2N+1$;(ii) 如果$f(z)\in\bigcup\limits_{j=1}^{2N+1} H_j$, 那么$\frac{|\langle f(z),H_0\rangle|}{\|f\|\|H_0\|}\ge \delta$, 这里$0<\delta<1$是一个常数,而$H_0=\{w_0=0\}$,\noindent 则$\mathcal F$在$D$上正规.  相似文献   

10.
该文研究一类推广的${\bf R}^{d}$中具有有限记忆的随机递归模型,引入了一个与该结构有关的函数$\Psi(\beta),\beta\geq 0$,构造了一个随机测度$\mu_\omega$,证明了由该结构产生的随机集 $K(\omega)$的Hausdorff维数是$\alpha:=\inf\{\beta:\Psi(\beta)\leq1\}$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号