首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Qualification-free dual characterizations are given for robust polyhedral set containments where a robust counterpart of an uncertain polyhedral set is contained in another polyhedral set or a polyhedral set is contained in a robust counterpart of an uncertain polyhedral set. These results are used to characterize robust solutions of uncertain linear programs, where the uncertainty is defined in terms of intervals or l1-balls. The hidden separable sub-linearity of the robust counterparts allows qualification-free dual characterizations.  相似文献   

2.
We give characterizations of the containment of a convex set either in an arbitrary convex set or in a set described by reverse cone-convex inequalities in Banach spaces. The convex sets under consideration are the solution sets of an arbitrary number of cone-convex inequalities, which can be either weak or strict inequalities. These characterizations provide ways of verifying the containments either by comparing their corresponding dual cones or by checking the consistency of suitable associated systems. Particular cases of dual characterizations of set containments have played key roles in solving large scale knowledge-based data classification problems, where they are used to describe the containments as inequality constraints in optimization problems. The concept of evenly convex set is used to derive the dual conditions, characterizing the set containments.   相似文献   

3.
In this paper, we consider robust optimal solutions for a convex optimization problem in the face of data uncertainty both in the objective and constraints. By using the properties of the subdifferential sum formulae, we first introduce a robust-type subdifferential constraint qualification, and then obtain some completely characterizations of the robust optimal solution of this uncertain convex optimization problem. We also investigate Wolfe type robust duality between the uncertain convex optimization problem and its uncertain dual problem by proving duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem. Moreover, we show that our results encompass as special cases some optimization problems considered in the recent literature.  相似文献   

4.
Characterizations of the containment of a convex set either in an arbitrary convex set or in the complement of a finite union of convex sets (i.e., the set, described by reverse-convex inequalities) are given. These characterizations provide ways of verifying the containments either by comparing their corresponding dual cones or by checking the consistency of suitable associated systems. The convex sets considered in this paper are the solution sets of an arbitrary number of convex inequalities, which can be either weak or strict inequalities. Particular cases of dual characterizations of set containments have played key roles in solving large scale knowledge-based data classification problems where they are used to describe the containments as inequality constraints in optimization problems. The idea of evenly convex set (intersection of open half spaces), which was introduced by W. Fenchel in 1952, is used to derive the dual conditions, characterizing the set containments.  相似文献   

5.
In this paper, we examine duality for fractional programming problems in the face of data uncertainty within the framework of robust optimization. We establish strong duality between the robust counterpart of an uncertain convex–concave fractional program and the optimistic counterpart of its conventional Wolfe dual program with uncertain parameters. For linear fractional programming problems with constraint-wise interval uncertainty, we show that the dual of the robust counterpart is the optimistic counterpart in the sense that they are equivalent. Our results show that a worst-case solution of an uncertain fractional program (i.e., a solution of its robust counterpart) can be obtained by solving a single deterministic dual program. In the case of a linear fractional programming problem with interval uncertainty, such solutions can be found by solving a simple linear program.  相似文献   

6.
In this paper, we present a duality theory for fractional programming problems in the face of data uncertainty via robust optimization. By employing conjugate analysis, we establish robust strong duality for an uncertain fractional programming problem and its uncertain Wolfe dual programming problem by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. We show that our results encompass as special cases some programming problems considered in the recent literature. Moreover, we also show that robust strong duality always holds for linear fractional programming problems under scenario data uncertainty or constraint-wise interval uncertainty, and that the optimistic counterpart of the dual is tractable computationally.  相似文献   

7.
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. A robust strong duality theorem is given whenever the Lagrangian function is convex. We provide classes of uncertain non-convex programming problems for which robust strong duality holds under a constraint qualification. In particular, we show that robust strong duality is guaranteed for non-convex quadratic programming problems with a single quadratic constraint with the spectral norm uncertainty under a generalized Slater condition. Numerical examples are given to illustrate the nature of robust duality for uncertain nonlinear programming problems. We further show that robust duality continues to hold under a weakened convexity condition.  相似文献   

8.
This paper considers an uncertain convex optimization problem, posed in a locally convex decision space with an arbitrary number of uncertain constraints. To this problem, where the uncertainty only affects the constraints, we associate a robust (pessimistic) counterpart and several dual problems. The paper provides corresponding dual variational principles for the robust counterpart in terms of the closed convexity of different associated cones.  相似文献   

9.
We develop a duality theory for minimax fractional programming problems in the face of data uncertainty both in the objective and constraints. Following the framework of robust optimization, we establish strong duality between the robust counterpart of an uncertain minimax convex–concave fractional program, termed as robust minimax fractional program, and the optimistic counterpart of its uncertain conventional dual program, called optimistic dual. In the case of a robust minimax linear fractional program with scenario uncertainty in the numerator of the objective function, we show that the optimistic dual is a simple linear program when the constraint uncertainty is expressed as bounded intervals. We also show that the dual can be reformulated as a second-order cone programming problem when the constraint uncertainty is given by ellipsoids. In these cases, the optimistic dual problems are computationally tractable and their solutions can be validated in polynomial time. We further show that, for robust minimax linear fractional programs with interval uncertainty, the conventional dual of its robust counterpart and the optimistic dual are equivalent.  相似文献   

10.
In this paper we present a robust conjugate duality theory for convex programming problems in the face of data uncertainty within the framework of robust optimization, extending the powerful conjugate duality technique. We first establish robust strong duality between an uncertain primal parameterized convex programming model problem and its uncertain conjugate dual by proving strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem under a regularity condition. This regularity condition is not only sufficient for robust duality but also necessary for it whenever robust duality holds for every linear perturbation of the objective function of the primal model problem. More importantly, we show that robust strong duality always holds for partially finite convex programming problems under scenario data uncertainty and that the optimistic counterpart of the dual is a tractable finite dimensional problem. As an application, we also derive a robust conjugate duality theorem for support vector machines which are a class of important convex optimization models for classifying two labelled data sets. The support vector machine has emerged as a powerful modelling tool for machine learning problems of data classification that arise in many areas of application in information and computer sciences.  相似文献   

11.
In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain Lagrangian dual. We show that robust duality holds whenever a robust moment cone is closed and convex. We then establish that the closed-convex robust moment cone condition in the case of constraint-wise uncertainty is in fact necessary and sufficient for robust duality. In other words, the robust moment cone is closed and convex if and only if robust duality holds for every linear objective function of the program. In the case of uncertain problems with affinely parameterized data uncertainty, we establish that robust duality is easily satisfied under a Slater type constraint qualification. Consequently, we derive robust forms of the Farkas lemma for systems of uncertain semi-infinite linear inequalities.  相似文献   

12.
《Optimization》2012,61(5):713-733
This article develops the deterministic approach to duality for semi-definite linear programming problems in the face of data uncertainty. We establish strong duality between the robust counterpart of an uncertain semi-definite linear programming model problem and the optimistic counterpart of its uncertain dual. We prove that strong duality between the deterministic counterparts holds under a characteristic cone condition. We also show that the characteristic cone condition is also necessary for the validity of strong duality for every linear objective function of the original model problem. In addition, we derive that a robust Slater condition alone ensures strong duality for uncertain semi-definite linear programs under spectral norm uncertainty and show, in this case, that the optimistic counterpart is also computationally tractable.  相似文献   

13.
《Optimization》2012,61(7):1033-1040
We identify and discuss issues of hidden over-conservatism in robust linear optimization, when the uncertainty set is polyhedral with a budget of uncertainty constraint. The decision-maker selects the budget of uncertainty to reflect his degree of risk aversion, i.e. the maximum number of uncertain parameters that can take their worst-case value. In the first setting, the cost coefficients of the linear programming problem are uncertain, as is the case in portfolio management with random stock returns. We provide an example where, for moderate values of the budget, the optimal solution becomes independent of the nominal values of the parameters, i.e. is completely disconnected from its nominal counterpart, and discuss why this happens. The second setting focusses on linear optimization with uncertain upper bounds on the decision variables, which has applications in revenue management with uncertain demand and can be rewritten as a piecewise linear problem with cost uncertainty. We show in an example that it is possible to have more demand parameters equal their worst-case value than what is allowed by the budget of uncertainty, although the robust formulation is correct. We explain this apparent paradox.  相似文献   

14.
Motivated by weakly convex optimization and quadratic optimization problems, we first show that there is no duality gap between a difference of convex (DC) program over DC constraints and its associated dual problem. We then provide certificates of global optimality for a class of nonconvex optimization problems. As an application, we derive characterizations of robust solutions for uncertain general nonconvex quadratic optimization problems over nonconvex quadratic constraints.  相似文献   

15.
Dual characterizations of the containment of a convex set, defined by infinite quasiconvex constraints, in an evenly convex set, and in a reverse convex set, defined by infinite quasiconvex constraints, are provided. Notions of quasiconjugate for quasiconvex functions, λ-quasiconjugate and λ-semiconjugate, play important roles to derive the characterizations of the set containments.  相似文献   

16.
We address the problem of determining a robust maximum flow value in a network with uncertain link capacities taken in a polyhedral uncertainty set. Besides a few polynomial cases, we focus on the case where the uncertainty set is taken to be the solution set of an associated (continuous) knapsack problem. This class of problems is shown to be polynomially solvable for planar graphs, but NP-hard for graphs without special structure. The latter result provides evidence of the fact that the problem investigated here has a structure fundamentally different from the robust network flow models proposed in various other published works.  相似文献   

17.
Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed as the (Minkowski) sum of a polytope and a polyhedral convex cone. This paper provides five characterizations of the larger class of closed convex sets in finite dimensional Euclidean spaces which are the sum of a compact convex set with a closed convex cone. These characterizations involve different types of representations of closed convex sets as the support functions, dual cones and linear systems whose relationships are also analyzed in the paper. The obtaining of information about a given closed convex set F and the parametric linear optimization problem with feasible set F from each of its different representations, including the Motzkin decomposition, is also discussed.  相似文献   

18.
Robust optimization is a tractable alternative to stochastic programming particularly suited for problems in which parameter values are unknown, variable and their distributions are uncertain. We evaluate the cost of robustness for the robust counterpart to the maximum return portfolio optimization problem. The uncertainty of asset returns is modelled by polyhedral uncertainty sets as opposed to the earlier proposed ellipsoidal sets. We derive the robust model from a min-regret perspective and examine the properties of robust models with respect to portfolio composition. We investigate the effect of different definitions of the bounds on the uncertainty sets and show that robust models yield well diversified portfolios, in terms of the number of assets and asset weights.  相似文献   

19.
Dual characterizations of containment of a convex set, defined by quasiconvex constraints, in a convex set, and in a reverse convex set, defined by a quasiconvex constraint, are provided. Notions of quasiconjugate for quasiconvex functions, H-quasiconjugate and R-quasiconjugate, play important roles to derive characterizations of the set containments.  相似文献   

20.
The concepts of M-convex and L-convex functions were proposed by Murota in 1996 as two mutually conjugate classes of discrete functions over integer lattice points. M/L-convex functions are deeply connected with the well-solvability in nonlinear combinatorial optimization with integer variables. In this paper, we extend the concept of M-convexity and L-convexity to polyhedral convex functions, aiming at clarifying the well-behaved structure in well-solved nonlinear combinatorial optimization problems in real variables. The extended M/L-convexity often appears in nonlinear combinatorial optimization problems with piecewise-linear convex cost. We investigate the structure of polyhedral M-convex and L-convex functions from the dual viewpoint of analysis and combinatorics and provide some properties and characterizations. It is also shown that polyhedral M/L-convex functions have nice conjugacy relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号