首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The general scheme, suggested in [1] using a basis of an infinite-dimensional space and allowing to construct finite-dimensional orthogonal systems and interpolation formulas, is improved in the paper. This results particularly in a generalization of the well-known scheme by which periodic interpolatory wavelets are constructed. A number of systems which do not satisfy all the conditions for multiresolution analysis but have some useful properties are introduced and investigated.

Starting with general constructions in Hilbert spaces, we give a more careful consideration to the case connected with the classic Fourier basis.

Convergence of expansions which are similar to partial sums of the summation method of Fourier series, as well as convergence of interpolation formulas are considered.

Some applications to fast calculation of Fourier coefficients and to solution of integrodifferential equations are given. The corresponding numerical results have been obtained by means of MATHEMATICA 3.0 system.  相似文献   

2.
We consider a reaction-diffusion system which models a fast reversible reaction of type C 1 + C 2?C 3 between mobile reactants inside an isolated vessel. Assuming mass action kinetics, we study the limit when the reaction speed tends to infinity in case of unequal diffusion coefficients and prove convergence of a subsequence of solutions to a weak solution of an appropriate limiting pde-system, where the limiting problem turns out to be of cross-diffusion type. The proof combines the L 2-approach to reaction-diffusion systems having at most quadratic reaction terms with a thorough exploitation of the entropy functional for mass action systems. The limiting cross-diffusion system has unique local strong solutions for sufficiently regular initial data, while uniqueness of weak solutions is in general open but is shown to be valid under restrictions on the diffusivities.  相似文献   

3.
In this paper we investigate sequential convergences on a cyclically ordered group G which are compatible with the group operation and with the relation of cyclic order; we do not assume the validity of the Urysohn’s axiom. The system convG of convergences under consideration is partially ordered by means of the set-theoretical inclusion. We prove that convG is a Brouwerian lattice. This work has been partially supported by the Slovak Academy of Sciences via the project Center of Excellence-Physics of Information, grant I/2/2005.  相似文献   

4.
Stochastic differential equations in ?n with random coefficients are considered where one continuous driving process admits a generalized quadratic variation process. The latter and the other driving processes are assumed to possess sample paths in the fractional Sobolev space Wβ2 for some β > 1/2. The stochastic integrals are determined as anticipating forward integrals. A pathwise solution procedure is developed which combines the stochastic Itô calculus with fractional calculus via norm estimates of associated integral operators in Wα 2 for 0 < α < 1. Linear equations are considered as a special case. This approach leads to fast computer algorithms basing on Picard's iteration method. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Abstract

In this article, we consider a new class of fractional impulsive neutral stochastic functional integro-differential equations with infinite delay in Hilbert spaces. First, by using stochastic analysis, fractional calculus, analytic α-resolvent operator and suitable fixed point theorems, we prove the existence of mild solutions and optimal mild solutions for these equations. Second, the existence of optimal pairs of system governed by fractional impulsive partial stochastic integro-differential equations is also presented. The results are obtained under weaker conditions in the sense of the fractional power arguments. Finally, an example is given for demonstration.  相似文献   

6.
Abstract

We show the existence of weak solutions in an elliptic region in the self-similar plane to the two-dimensional Riemann problem for the pressure-gradient system of the compressible Euler system. The two-dimensional Riemann problem we study is the interaction of two forward rarefaction waves, which are adjacent to a common vacuum that occupies a sectorial domain of 90 degrees. We assume the origin is on the boundary of the domain. In addition, the domain is open, bounded, and simply connected with a piecewise C 2,α boundary. We resolve the difficulty that arises from the fact that the origin is on the boundary of the domain.  相似文献   

7.
The purpose of this paper is to compare several kinds of convergences on the space C(X) of nonempty closed convex subsets of a locally convex space X. First we verify that the AW-convergence on C(X) is weaker than the metric Attouch-Wets convergence on C(X) of a metrizable locally convex space X. Moreover, we show that X is normable if and only if the two convergences on C(X × R) are equivalent. Secondly we define two convergences on C(X) analogous to the corresponding ones in a normed linear space, and investigate some basic properties of these convergences and compare them.  相似文献   

8.
The mathematical models of dynamical systems become more and more complex, and hence, numerical investigations are a time-consuming process. This is particularly disadvantageous if a repeated evaluation is needed, as is the case in the field of model-based design, for example, where system parameters are subject of variation. Therefore, there exists a necessity for providing compact models which allow for a fast numerical evaluation. Nonetheless, reduced models should reflect at least the principle of system dynamics of the original model.

In this contribution, the reduction of dynamical systems with time-periodic coefficients, termed as parametrically excited systems, subjected to self-excitation is addressed. For certain frequencies of the time-periodic coefficients, referred to as parametric antiresonance frequencies, vibration suppression is achieved, as it is known from the literature. It is shown in this article that by using the method of Proper Orthogonal Decomposition (POD) excitation at a parametric antiresonance frequency results in a concentration of the main system dynamics in a subspace of the original solution space. The POD method allows to identify this subspace accurately and to set up reduced models which approximate the stability behaviour of the original model in the vicinity of the antiresonance frequency in a satisfying manner. For the sake of comparison, modally reduced models are established as well.  相似文献   

9.
Stochastic delay differential equations (SDDE’s) have been used for financial modeling. In this article, we study a SDDE obtained by the equation of a CIR process, with an additional fixed delay term in drift; in particular, we prove that there exists a unique strong solution (positive and integrable) which we call fixed delay CIR process. Moreover, for the fixed delay CIR process, we derive a Feynman-Kac type formula, leading to a generalized exponential-affine formula, which is used to determine a bond pricing formula when the interest rate follows the delay’s equation. It turns out that, for each maturity time T, the instantaneous forward rate is an affine function (with time dependent coefficients) of the rate process and of an auxiliary process (also depending on T). The coefficients satisfy a system of deterministic differential equations.  相似文献   

10.
《Quaestiones Mathematicae》2013,36(8):1117-1133
Abstract

Prior to investigating on sequence spaces and their convergence, we study the notion of statistical convergence of difference sequences of fractional order α ∈ ?. As generalizations of previous works, this study includes several special cases under different limiting conditions of α, such as the notion of statistical convergence of difference sequences of zeroth and mth (integer) order. In fact, we study certain new results on statistical convergence via the difference operator Δα and interpret them to those of previous works. Also, by using the convergence of Δα-summable sequences which is stronger than statistical convergence of difference sequences, we apply classical Bernstein operator and a generalized form of Meyer-Konig and Zeller operator to construct an example in support of our result. Also, we study the rates of Δα-statistical convergence of positive linear operators.  相似文献   

11.

The bisymplectic Grassmannian \({{\,\mathrm{I_2Gr}\,}}(k,V)\) parametrizes k-dimensional subspaces of a vector space V which are isotropic with respect to two general skew-symmetric forms; it is a Fano projective variety which admits an action of a torus with a finite number of fixed points. In this work, we study its equivariant cohomology with complex coefficients when \(k=2\); the central result of the paper is an equivariant Chevalley formula for the multiplication of the hyperplane class by any Schubert class. Moreover, we study in detail the case of \({{\,\mathrm{I_2Gr}\,}}(2, {\mathbb {C}}^6)\), which is a quasi-homogeneous variety, we analyse its deformations, and we give a presentation of its cohomology.

  相似文献   

12.
Parametric scaling, the process of extrapolation of a modelling result to new parametric conditions, is often required in model optimization, and can be important if the effects of parametric uncertainty on model predictions are to be quantified. Knowledge of the functional relationship between the model solution (y) and the system parameters (α) may also provide insight into the physical system underlying the model. This paper examines strategies for parametric scaling, assuming that only the nominal model solution y(α) and the associated parametric sensitivity coefficients (?y/?α, ?2y/?α2, etc.) are known. The truncated Taylor series is shown to be a poor choice for parametric scaling, when y has known bounds. Alternate formulae are proposed which ‘build-in’ the constraints on y, thus expanding the parametric region in which the extrapolation may be valid. In the case where y has a temporal as well as a parametric dependence, the extrapolation may be further improved by removing from the Taylor series coefficients the ‘secular’ components, which refer to changes in the time scale of y(t), not to changes in y as a function of α.  相似文献   

13.
In this paper, we consider a second‐order fast explicit operator splitting method for the viscous Cahn‐Hilliard equation, which includes a viscosity term αΔut (α ∈ (0, 1)) described the influences of internal micro‐forces. The choice α = 0 corresponds to the classical Cahn‐Hilliard equation whilst the choice α = 1 recovers the nonlocal Allen‐Cahn equation. The fundamental idea of our method is to split the original problem into linear and nonlinear parts. The linear subproblem is numerically solved using a pseudo‐spectral method, and thus an ordinary differential equation is obtained. The nonlinear one is solved via TVD‐RK method. The stability and convergence are discussed in L2‐norm. Numerical experiments are performed to validate the accuracy and efficiency of the proposed method. Besides, a detailed comparison is made for the dynamics and the coarsening process of the metastable pattern for various values of α. Moreover, energy degradation and mass conservation are also verified.  相似文献   

14.
Yanchenko  A. Ya.  Podkopaeva  V. A. 《Mathematical Notes》2020,107(5-6):826-837

The paper deals with the class of entire functions that increase not faster than exp{γ∣z∣6/5(ln∣z∣)?1} and that, together with their first derivatives, take values from a fixed field of algebraic numbers at the points of a two-dimensional lattice of general form (in this case, the values increase not too fast). It is shown that any such functions is either a polynomial or can be represented in the form e?mαzP(eαz), where m is a nonnegative integer, P is a polynomial, and α is an algebraic number.

  相似文献   

15.

We study fundamental properties of product (α1, α2)-modulation spaces built by (α1, α2)-coverings of ℝn1 × ℝn2. Precisely we prove embedding theorems between these spaces with different parameters and other classical spaces. Furthermore, we specify their duals. The characterization of product modulation spaces via the short time Fourier transform is also obtained. Families of tight frames are constructed and discrete representations in terms of corresponding sequence spaces are derived. Fourier multipliers are studied and as applications we extract lifting properties and the identification of our spaces with (fractional) Sobolev spaces with mixed smoothness.

  相似文献   

16.
We use state dependent Gaussian perturbations to stabilise the solutions of differential equations with coefficients that take, as arguments, averaged sets of information from the history of the solution, as well as isolated past and present states. The properties that guarantee stability also guarantee positivity of solutions as long as the initial value is nonzero.

We do not require that any component of the coefficients of the equations satisfy Lipschitz conditions. Instead, we require that the functional part of each coefficient which feeds back the present state of the process admit to bounds imposed by a member of a particular class of concave functions. Lipschitz conditions are included as a special case of these bounds.

We generalise these results to the finite dimensional case, also constructing perturbations that can destabilise the otherwise stable solutions of a deterministic system of equations.  相似文献   

17.
Abstract

Projection pursuit describes a procedure for searching high-dimensional data for “interesting” low-dimensional projections via the optimization of a criterion function called the projection pursuit index. By empirically examining the optimization process for several projection pursuit indexes, we observed differences in the types of structure that maximized each index. We were especially curious about differences between two indexes based on expansions in terms of orthogonal polynomials, the Legendre index, and the Hermite index. Being fast to compute, these indexes are ideally suited for dynamic graphics implementations.

Both Legendre and Hermite indexes are weighted L 2 distances between the density of the projected data and a standard normal density. A general form for this type of index is introduced that encompasses both indexes. The form clarifies the effects of the weight function on the index's sensitivity to differences from normality, highlighting some conceptual problems with the Legendre and Hermite indexes. A new index, called the Natural Hermite index, which alleviates some of these problems, is introduced.

A polynomial expansion of the data density reduces the form of the index to a sum of squares of the coefficients used in the expansion. This drew our attention to examining these coefficients as indexes in their own right. We found that the first two coefficients, and the lowest-order indexes produced by them, are the most useful ones for practical data exploration because they respond to structure that can be analytically identified, and because they have “long-sighted” vision that enables them to “see” large structure from a distance. Complementing this low-order behavior, the higher-order indexes are “short-sighted.” They are able to see intricate structure, but only when they are close to it.

We also show some practical use of projection pursuit using the polynomial indexes, including a discovery of previously unseen structure in a set of telephone usage data, and two cautionary examples which illustrate that structure found is not always meaningful.  相似文献   

18.
Functional operators, i.e., sums of weighted shift operators generated by various maps, are considered. For functional operators with positive coefficients, variational principles for spectral radii are obtained. These principles say that the logarithm of the spectral radius is the Legendre transform of a certain convex functional T defined on the set of probability vector-valued measures and depending on the original dynamical system and the functional space considered. In the subexponential case, we obtain the combinatorial structure of the functional T with the help of the corresponding random walk process constructed according to the dynamical system. __________ Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 15, Differential and Functional Differential Equations. Part 1, 2006.  相似文献   

19.

In this paper, we study a direct parallel-in-time (PinT) algorithm for first- and second-order time-dependent differential equations. We use a second-order boundary value method as the time integrator. Instead of solving the corresponding all-at-once system iteratively, we diagonalize the time discretization matrix B, which yields a direct parallel implementation across all time steps. A crucial issue of this methodology is how the condition number (denoted by Cond2(V )) of the eigenvector matrix V of B behaves as n grows, where n is the number of time steps. A large condition number leads to large roundoff error in the diagonalization procedure, which could seriously pollute the numerical accuracy. Based on a novel connection between the characteristic equation and the Chebyshev polynomials, we present explicit formulas for V and V− 1, by which we prove that Cond\(_{2}(V)=\mathcal {O}(n^{2})\). This implies that the diagonalization process is well-conditioned and the roundoff error only increases moderately as n grows, and thus, compared to other direct PinT algorithms, a much larger n can be used to yield satisfactory parallelism. A fast structure-exploiting algorithm is also designed for computing the spectral diagonalization of B. Numerical results on parallel machine are given to support our findings, where over 60 times speedup is achieved with 256 cores.

  相似文献   

20.
To each reduced root system Φ of rank r, and each sufficiently large integer n, we define a family of multiple Dirichlet series in r complex variables, whose group of functional equations is isomorphic to the Weyl group of Φ. The coefficients in these Dirichlet series exhibit a multiplicativity that reduces the specification of the coefficients to those that are powers of a single prime p. For each p, the number of nonzero such coefficients is equal to the order of the Weyl group, and each nonzero coefficient is a product of n-th order Gauss sums. The root system plays a basic role in the combinatorics underlying the proof of the functional equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号