首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two fixed points associated with the Coulomb singularity of a four-electron atom give rise to the highest symmetry four-electron escape geometries, i.e., a regular tetrahedron and a square. We analyze the non-linear properties of the fixed points and discuss how these properties allow for prevailing break-up patterns that are different than the generally expected ones of highest symmetry. Indeed, it was recently shown in Emmanouilidou and Price (2013) [1] that the prevailing break-up geometry in single photon quadruple ionization from the ground state of Be is a triangular pyramid. Moreover, using a previously introduced collision classification scheme we identify the collision sequences that are consistent with the regular tetrahedron and the square planar break-up geometries in single photon quadruple ionization from the ground state of Be. To illustrate the collision sequences contributing the most we plot the probability density of the inter-electronic angles.  相似文献   

2.
We examine a spiralling slender viscous jet emerging from a rapidly rotating orifice, extending Wallwork et al. [I.M. Wallwork, S.P. Decent, A.C. King, R.M.S.M. Schulkes, The trajectory and stability of a spiralling liquid jet. Part 1. Inviscid theory, J. Fluid Mech. 459 (2002) 43–65] by incorporating viscosity. The effects of viscosity on the trajectory of the jet and its linear instability are determined using a mixture of computational and asymptotic methods, and verified using experiments. A non-monotonic relationship between break-up length and rotation rate is demonstrated with the trend varying with viscosity. The sizes of the droplets produced by this instability are determined by considering the most unstable wave mode. It is also found that there is a non-monotonic relationship between droplet size and viscosity. Satellite droplet formation is also considered by analysing very short wavelength modes. The effects of long wavelength modes are examined, and a wave which propagates down the trajectory of the jet is identified for the highly viscous case. A comparison between theoretical and experimental results is made, with favourable agreement. In particular, a quantitative comparison is made between droplet sizes predicted from the theory with experimental observations, with encouraging agreement obtained. Four different types of break-up are identified in our experiments. The experimentally observed break-up mechanisms are discussed in light of our theory.  相似文献   

3.
4.
In this paper, a CFD model for bubbly-flow including break-up and coalescence is discussed. The probabilistic method, developed according to this model, is tested for an industrial configuration: numerical bubble-size distributions are compared with those derived by experiments.  相似文献   

5.
Reaction-diffusion systems of activator-inhibitor type are studied on an N-dimensional ball with the homogeneous Neumann boundary conditions. Under the condition that the activator diffuses slowly, reacts rapidly and the inhibitor diffuses rapidly, reacts moderately, we show that the system admits a family of spherically symmetric internal transition layer equilibria. The method of proof consists of rigorous asymptotic expansions and a Lyapunov-Schmidt reduction.  相似文献   

6.
We prove global existence of nonnegative weak solutions to a degenerate parabolic system which models the interaction of two thin fluid films in a porous medium. Furthermore, we show that these weak solutions converge at an exponential rate towards flat equilibria.  相似文献   

7.
We consider the spectral problem for a non self-adjoint Dirichlet problem for a higher-order elliptic operator in a sequence of perforated domains. We establish the convergence of the singular numbers generated by the problem to the corresponding singular numbers generated by a limit problem of the same type but containing an additional term of capacity type.Research supported by the National Research Foundation of South Africa.  相似文献   

8.
This paper studies the uniqueness and the asymptotic stability of a pyramidal traveling front in the three-dimensional whole space. For a given admissible pyramid we prove that a pyramidal traveling front is uniquely determined and that it is asymptotically stable under the condition that given perturbations decay at infinity. For this purpose we characterize the pyramidal traveling front as a combination of planar fronts on the lateral surfaces. Moreover we characterize the pyramidal traveling front in another way, that is, we write it as a combination of two-dimensional V-form waves on the edges. This characterization also uniquely determines a pyramidal traveling front.  相似文献   

9.
We prove the global existence of the so-called H2 solutions for a nonlinear wave equation with a nonlinear dissipative term and a derivative type nonlinear perturbation. To show the boundedness of the second order derivatives we need a precise energy decay estimate and for this we employ a ‘loan’ method.  相似文献   

10.
First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.  相似文献   

11.
The problem of finding a local minimum of a real differentiable function is considered from a homotopic point of view. Using a Davidenko embedding method with a particular homotopy, an ordinary differential equation is derived. Solution of this equation by Euler's rule gives rise to an iteration formula for the optimization problem. Convergence and termination properties of this formula are discussed.  相似文献   

12.
In this article, using a result of Pata and Zelik (2007) [45], we derive a general result on the existence of pullback attractors for closed cocycles acting on a Banach space, where the strong continuity is replaced by a much weaker requirement that the cocycle be a closed map. As application, we prove the existence of the pullback attractor of a cocycle associated with the z-weak solutions of a non-autonomous two-dimensional primitive equations of the ocean.  相似文献   

13.
The linear stability problem of the rotational motion of a rigid body around a fixed point containing an inner cavity filled up with an ideal fluid is considered. In this paper, we also assume that the fluid is rotating. The effect of the angular velocities of the rigid body and the fluid in the stability problem is studied. The case of a cavity ellipsoidal is presented in detail.  相似文献   

14.
We study the behavior of solutions of the Cauchy problem for a semilinear parabolic equation with supercritical nonlinearity. It is known that if two solutions are initially close enough near the spatial infinity, then these solutions approach each other. In this paper, we give its sharp convergence rate for a class of initial data. We also derive a universal lower bound of the convergence rate which implies the optimality of the result. Proofs are given by a comparison method based on matched asymptotics expansion.  相似文献   

15.
We derive an energy decay estimate for solutions to the initial-boundary value problem of a semilinear wave equation with a nonlinear localized dissipation. To overcome a difficulty related to derivative-loss mechanism we employ a ‘loan’ method.  相似文献   

16.
This paper deals with a mathematical model describing the cell cycle dynamics and chemotactic driven cell movement in a multicellular tumor spheroid. Tumor cells consist of two types of cells: proliferating cells and quiescent cells, which have different chemotactic responses to an extracellular nutrient supply. The model is a free boundary problem for a nonlinear system of reaction-diffusion-advection equations, where the free boundary is the outer boundary of the spheroid. The free boundary condition is quite novel due to different velocity of two types of cells. The global existence and uniqueness of solutions to the model is proved. The proof is based on a fixed point argument, together with the Lp-theory for parabolic equations with the third boundary condition.  相似文献   

17.
Semi-hyperbolic patches are the regions in which one family out of two nonlinear families of characteristics starts on sonic curves and ends on transonic shock waves. This type of region appears frequently in the two-dimensional Riemann problem for the Euler equations and its simplified models and a few other situations. We construct a semi-hyperbolic patch of solution to the two-dimensional nonlinear wave system with Chaplygin gas equation of state by approaching the problem as a Goursat-type boundary value problem which has a sonic curve as the degenerate boundary.  相似文献   

18.
We obtain regularity criteria for a quasi-geostrophic equation that depends more on one direction than the others. In particular, we show that in the critical case, the global regularity depends only on a partial derivative rather than a gradient of the solution.  相似文献   

19.
Extending previous results of Oh-Zumbrun and Johnson-Zumbrun, we show that spectral stability implies linearized and nonlinear stability of spatially periodic traveling wave solutions of viscous systems of conservation laws for systems of generic type, removing a restrictive assumption that wave speed be constant to first order along the manifold of nearby periodic solutions. Key to our analysis is a nonlinear cancellation estimate observed by Johnson and Zumbrun, along with a detailed understanding of the Whitham averaged system. The latter motivates a careful analysis of the Bloch perturbation expansion near zero frequency and suggests factoring out an appropriate translational modulation of the underlying wave, allowing us to derive the sharpened low-frequency estimates needed to close the nonlinear iteration arguments.  相似文献   

20.
In the paper, we first use the energy method to establish the local well-posedness as well as blow-up criteria for the Cauchy problem on the two-component Euler–Poincaré equations in multi-dimensional space. In the case of dimensions 2 and 3, we show that for a large class of smooth initial data with some concentration property, the corresponding solutions blow up in finite time by using Constantin–Escher Lemma and Littlewood–Paley decomposition theory. Then for the one-component case, a more precise blow-up estimate and a global existence result are also established by using similar methods. Next, we investigate the zero density limit and the zero dispersion limit. At the end, we also briefly demonstrate a Liouville type theorem for the stationary weak solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号