首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract. How to verify that a given fuzzy set A∈F(X ) is a fuzzy code? In this paper, an al-gorithm of test has been introduced and studied with the example of test. The measure notionfor a fuzzy code and a precise formulation of fuzzy codes and words have been discussed.  相似文献   

2.
The natural language computing today demands for the study of ω-languages. Therefore in this respect it is convenient to consider fuzzy ω-languages. In this paper, the concept of fuzzy local ω-language, Büchi fuzzy local ω-language, and some closure properties of fuzzy local ω-languages are presented. We introduce deterministic fuzzy finite automaton with different acceptance mode on fuzzy ω-languages and establish the relationship between these various classes of fuzzy ω-languages. We have defined deterministic fuzzy local automaton and also establish relationships between deterministic fuzzy local automaton, fuzzy local ω-language and Büchi fuzzy local ω-language. Further we show that every fuzzy regular ω-language is a projection of a Büchi fuzzy local ω-language.  相似文献   

3.
When R is a fuzzy relation between the elements of a finite set X, the fuzzy sets A of X such that R ° A = A (MAX-MIN composition) are called eigen fuzzy sets. The main result of this paper is the determination of the greatest eigen fuzzy set associated with a given fuzzy relation and we give three methods illustrated by an example. We then state that the greatest eigen fuzzy set associated with R?, the transitive closure of R, is exactly the one associated with R. Finally we describe how to obtain all fuzzy relations keeping invariant a given fuzzy set.  相似文献   

4.
Assuming that 1 is any operation defined on a product set X × Y and taking values on a set Z, it can be extended to fuzzy sets by means of Zadeh's extension principle. Given a fuzzy subset C of Z, it is here shown how to solve the equation A 1 B = C (or A 1 B ? C) when a fuzzy subset A of X (or a fuzzy subset B of Y) is given. The methodology we provide includes, as a special case, the resolution of fuzzy arithmetical operations, i.e. when 1 stands for +, ?, × or ÷, extended to fuzzy numbers (fuzzy subsets of the real line). The paper is illustrated with several examples in fuzzy arithmetic.  相似文献   

5.
When R is a fuzzy relation between the elements of a finite set X, the fuzzy subsets A of X such that R·A = A (max-min composition) are called eigen fuzzy sets. In this paper we describe algorithms for the determination of the greatest eigen fuzzy set associated with a given fuzzy relation, thinking of medical diagnosis applications.  相似文献   

6.
In this paper, a new hybrid method based on fuzzy neural network for approximate solution of fully fuzzy matrix equations of the form AX=DAX=D, where A and D are two fuzzy number matrices and the unknown matrix X is a fuzzy number matrix, is presented. Then, we propose some definitions which are fuzzy zero number, fuzzy one number and fuzzy identity matrix. Based on these definitions, direct computation of fuzzy inverse matrix is done using fuzzy matrix equations and fuzzy neural network. It is noted that the uniqueness of the calculated fuzzy inverse matrix is not guaranteed. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate solution of fuzzy matrix equations that supposedly has a unique fuzzy solution, a simple algorithm from the cost function of the fuzzy neural network is proposed. To illustrate the easy application of the proposed method, numerical examples are given and the obtained results are discussed.  相似文献   

7.
This paper proposes a general study of (I,T)-interval-valued fuzzy rough sets on two universes of discourse integrating the rough set theory with the interval-valued fuzzy set theory by constructive and axiomatic approaches. Some primary properties of interval-valued fuzzy logical operators and the construction approaches of interval-valued fuzzy T-similarity relations are first introduced. Determined by an interval-valued fuzzy triangular norm and an interval-valued fuzzy implicator, a pair of lower and upper generalized interval-valued fuzzy rough approximation operators with respect to an arbitrary interval-valued fuzzy relation on two universes of discourse is then defined. Properties of I-lower and T-upper interval-valued fuzzy rough approximation operators are examined based on the properties of interval-valued fuzzy logical operators discussed above. Connections between interval-valued fuzzy relations and interval-valued fuzzy rough approximation operators are also established. Finally, an operator-oriented characterization of interval-valued fuzzy rough sets is proposed, that is, interval-valued fuzzy rough approximation operators are characterized by axioms. Different axiom sets of I-lower and T-upper interval-valued fuzzy set-theoretic operators guarantee the existence of different types of interval-valued fuzzy relations which produce the same operators.  相似文献   

8.
A fuzzy dynamical system on an underlying complete, locally compact metric state space X is defined axiomatically in terms of a fuzzy attainability set mapping on X. This definition includes as special cases crisp single and multivalued dynamical systems on X. It is shown that the support of such a fuzzy dynamical system on X is a crisp multivalued dynamical system on X, and that such a fuzzy dynamical system can be considered as a crisp dynamical system on a state space of nonempty compact fuzzy subsets of X. In addition fuzzy trajectories are defined, their existence established and various properties investigated.  相似文献   

9.
We study properties of binary codes with parameters close to the parameters of 1-perfect codes. An arbitrary binary (n?=?2 m ? 3, 2 n-m-1, 4) code C, i.e., a code with parameters of a triply-shortened extended Hamming code, is a cell of an equitable partition of the n-cube into six cells. An arbitrary binary (n?=?2 m ? 4, 2 n-m , 3) code D, i.e., a code with parameters of a triply-shortened Hamming code, is a cell of an equitable family (but not a partition) with six cells. As a corollary, the codes C and D are completely semiregular; i.e., the weight distribution of such codes depends only on the minimal and maximal codeword weights and the code parameters. Moreover, if D is self-complementary, then it is completely regular. As an intermediate result, we prove, in terms of distance distributions, a general criterion for a partition of the vertices of a graph (from rather general class of graphs, including the distance-regular graphs) to be equitable.  相似文献   

10.
An ordinary subgroup of a group G is (1) a subset of G, (2) closed under the group operation. In a fuzzy subgroup it is precisely these two notions that lose their deterministic character. A fuzzy subgroup μ of a group (G,·) associates with each group element a number, the larger the number the more certainly that element belongs to the fuzzy subgroup. The closure property is captured by the inequality μ(x · y)?T(μ(x), μ(y)). In A. Rosenfeld's original definition, T was the function ‘minimum’. However, any t-norm T provides a meaningful generalization of the closure property. Two classes of fuzzy subgroups are investigated. The fuzzy subgroups in one class are subgroup generated, those in the other are function generated. Each fuzzy subgroup in these classes satisfies the above inequality with T given by T(a, b) = max(a + b ?1, 0). While the two classes look different, each fuzzy subgroup in either is isomorphic to one in the other. It is shown that a fuzzy subgroup satisfies the above inequality with T = ‘minimum’ if and only if it is subgroup generated of a very special type. Finally, these notions are applied to some abstract pattern recognition problems.  相似文献   

11.
Bisimulations have been widely used in many areas of computer science to model equivalence between various systems, and to reduce the number of states of these systems, whereas uniform fuzzy relations have recently been introduced as a means to model the fuzzy equivalence between elements of two possible different sets. Here we use the conjunction of these two concepts as a powerful tool in the study of equivalence between fuzzy automata. We prove that a uniform fuzzy relation between fuzzy automata A and B is a forward bisimulation if and only if its kernel and co-kernel are forward bisimulation fuzzy equivalence relations on A and B and there is a special isomorphism between factor fuzzy automata with respect to these fuzzy equivalence relations. As a consequence we get that fuzzy automata A and B are UFB-equivalent, i.e., there is a uniform forward bisimulation between them, if and only if there is a special isomorphism between the factor fuzzy automata of A and B with respect to their greatest forward bisimulation fuzzy equivalence relations. This result reduces the problem of testing UFB-equivalence to the problem of testing isomorphism of fuzzy automata, which is closely related to the well-known graph isomorphism problem. We prove some similar results for backward-forward bisimulations, and we point to fundamental differences. Because of the duality with the studied concepts, backward and forward-backward bisimulations are not considered separately. Finally, we give a comprehensive overview of various concepts on deterministic, nondeterministic, fuzzy, and weighted automata, which are related to bisimulations.  相似文献   

12.
Most papers on permutation codes have concentrated on the minimum Hamming distance of the code. An (n, d) permutation code (or permutation array) is simply a set of permutations on n elements in which the Hamming distance between any pair of distinct permutations (or codewords) is at least d. An (n, 2e + 1) or (n, 2e + 2) permutation code is able to correct up to e errors. These codes have a potential application to powerline communications. It is known that in an (n, 2e) permutation code the balls of radius e surrounding the codewords may all be pairwise disjoint, but usually some overlap. Thus an (n, 2e) permutation code is generally unable to correct e errors using nearest neighbour decoding. On the other hand, if the packing radius of the code is defined as the largest value of e for which the balls of radius e are all pairwise disjoint, a permutation code with packing radius e can be denoted by [n, e]. Such a permutation code can always correct e errors. In this paper it is shown that, in almost all cases considered, the number of codewords in the best [n, e] code found is substantially greater than the largest number of codewords in the best known (n, 2e + 1) code. Thus the packing radius more accurately specifies the requirement for an e-error-correcting permutation code than does the minimum Hamming distance. The techniques used include construction by automorphism group and several variations of clique search They are enhanced by two theoretical results which make the computations feasible.  相似文献   

13.
In this paper, we study the fuzzy almost continuous convergence of fuzzy nets on the set FAC(X, Y) of all fuzzy almost continuous functions of a fuzzy topological space X into another Y. Also, we introduce the notions of fuzzy splitting and fuzzy jointly continuous topologies on the set FAC(X, Y) and study some of its basic properties.  相似文献   

14.
In this paper, a novel hybrid method based on fuzzy neural network for approximate solution of fuzzy linear systems of the form Ax = Bx + d, where A and B are two square matrices of fuzzy coefficients, x and d are two fuzzy number vectors, is presented. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate solution, a simple and fast algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples.  相似文献   

15.
There are several methods in the literature for solving transportation problems by representing the parameters as normal fuzzy numbers. Chiang [J. Chiang, The optimal solution of the transportation problem with fuzzy demand and fuzzy product, J. Inform. Sci. Eng. 21 (2005) 439-451] pointed out that it is better to represent the parameters as (λρ) interval-valued fuzzy numbers instead of normal fuzzy numbers and proposed a method to find the optimal solution of single objective transportation problems by representing the availability and demand as (λρ) interval-valued fuzzy numbers. In this paper, the shortcomings of the existing method are pointed out and to overcome these shortcomings, a new method is proposed to find solution of a linear multi-objective transportation problem by representing all the parameters as (λρ) interval-valued fuzzy numbers. To illustrate the proposed method a numerical example is solved. The advantages of the proposed method over existing method are also discussed.  相似文献   

16.
K. Sinha  D. Wu 《Discrete Mathematics》2008,308(18):4205-4211
An (n,M,d;q) code is called equidistant code if the Hamming distance between any two codewords is d. It was proved that for any equidistant (n,M,d;q) code, d?nM(q-1)/(M-1)q(=dopt, say). A necessary condition for the existence of an optimal equidistant code is that dopt be an integer. If dopt is not an integer, i.e. the equidistant code is not optimal, then the code with d=⌊dopt⌋ is called good equidistant code, which is obviously the best possible one among equidistant codes with parameters n,M and q. In this paper, some constructions of good equidistant codes from balanced arrays and nested BIB designs are described.  相似文献   

17.
We introduce and study almost compactness for fuzzy topological spaces. We show that the almost continuous image of an almost compact fuzzy topological space is almost compact. Moreover, we show that generally almost compactness for fuzzy topological spaces is not product-invariant, but if X and Y are almost fuzzy topological spaces and X is product related to Y, then their fuzzy topological product is almost compact.  相似文献   

18.
An L-fuzzy topological space is said to be suitable if it possesses a nontrivial crisp closed subset. Basic properties of and sufficient conditions for suitable spaces are derived. Characterizations of the suitable subspaces of the fuzzy unit interval, the fuzzy open unit interval, and the fuzzy real line are obtained. Suitability is L-fuzzy productive; nondegenerate 11-Hausdorff spaces are suitable; the fuzzy unit interval, the fuzzy open unit interval, and the fuzzy real line are not suitable; and no suitable subspace of the fuzzy unit interval, the fuzzy open unit interval, or the fuzzy real line is a fuzzy retract of the fuzzy unit interval, the fuzzy open unit interval, or the fuzzy real line, respectively. Without restrictions there cannot be a fuzzy extension theorem.  相似文献   

19.
In this paper, we define the concept of C-scattered fuzzy topological spaces and obtain some properties about them. In particular, we study the relation between C-scattered spaces and its fuzzy extension, it is proved that C-scattered fuzzy topological spaces are invariant by fuzzy perfect maps, and that, in the realm of paracompact fuzzy topological spaces, the C-scattered spaces verify that their product by other fuzzy spaces is also paracompact fuzzy.  相似文献   

20.
A classification theory is developed for pairs of simple closed curves (A,B) in the sphere S2, assuming that AB has finitely many components. Such a pair of simple closed curves is called an SCC-pair, and two SCC-pairs (A,B) and (A,B) are equivalent if there is a homeomorphism from S2 to itself sending A to A and B to B. The simple cases where A and B coincide or A and B are disjoint are easily handled. The component code is defined to provide a classification of all of the other possibilities. The component code is not uniquely determined for a given SCC-pair, but it is straightforward that it is an invariant; i.e., that if (A,B) and (A,B) are equivalent and C is a component code for (A,B), then C is a component code for (A,B) as well. It is proved that the component code is a classifying invariant in the sense that if two SCC-pairs have a component code in common, then the SCC-pairs are equivalent. Furthermore code transformations on component codes are defined so that if one component code is known for a particular SCC-pair, then all other component codes for the SCC-pair can be determined via code transformations. This provides a notion of equivalence for component codes; specifically, two component codes are equivalent if there is a code transformation mapping one to the other. The main result of the paper asserts that if C and C are component codes for SCC-pairs (A,B) and (A,B), respectively, then (A,B) and (A,B) are equivalent if and only if C and C are equivalent. Finally, a generalization of the Schoenflies theorem to SCC-pairs is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号