首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Let W be a finite Coxeter group and X a subset of W. The length polynomial LW,X(t) is defined by LW,X(t)=xXt?(x), where ? is the length function on W. If X={xW:x2=1} then we call LW,X(t) the involution length polynomial of W. In this article we derive expressions for the length polynomial where X is any conjugacy class of involutions, and the involution length polynomial, in any finite Coxeter group W. In particular, these results correct errors in [11] for the involution length polynomials of Coxeter groups of type Bn and Dn. Moreover, we give a counterexample to a unimodality conjecture stated in [11].  相似文献   

2.
3.
4.
This paper deals with the chemotaxis-growth system: ut=Δu???(u?v)+μu(1?u), vt=Δv?v+w, τwt+δw=u in a smooth bounded domain Ω?R3 with zero-flux boundary conditions, where μ, δ, and τ are given positive parameters. It is shown that the solution (u,v,w) exponentially stabilizes to the constant stationary solution (1,1δ,1δ) in the norm of L(Ω) as t provided that μ>0 and any given nonnegative and suitably smooth initial data (u0,v0,w0) fulfills u0?0, which extends the condition μ>18δ2 in [8].  相似文献   

5.
6.
7.
8.
9.
《Discrete Mathematics》2021,344(12):112604
A well-known theorem of Vizing states that if G is a simple graph with maximum degree Δ, then the chromatic index χ(G) of G is Δ or Δ+1. A graph G is class 1 if χ(G)=Δ, and class 2 if χ(G)=Δ+1; G is Δ-critical if it is connected, class 2 and χ(Ge)<χ(G) for every eE(G). A long-standing conjecture of Vizing from 1968 states that every Δ-critical graph on n vertices has at least (n(Δ1)+3)/2 edges. We initiate the study of determining the minimum number of edges of class 1 graphs G, in addition, χ(G+e)=χ(G)+1 for every eE(G). Such graphs have intimate relation to (P3;k)-co-critical graphs, where a non-complete graph G is (P3;k)-co-critical if there exists a k-coloring of E(G) such that G does not contain a monochromatic copy of P3 but every k-coloring of E(G+e) contains a monochromatic copy of P3 for every eE(G). We use the bound on the size of the aforementioned class 1 graphs to study the minimum number of edges over all (P3;k)-co-critical graphs. We prove that if G is a (P3;k)-co-critical graph on nk+2 vertices, thene(G)k2(nk2ε)+(k/2+ε2), where ε is the remainder of nk/2 when divided by 2. This bound is best possible for all k1 and n3k/2+2.  相似文献   

10.
11.
《Discrete Mathematics》2022,345(9):112945
The coinvariant algebra is a quotient of the polynomial ring Q[x1,,xn] whose algebraic properties are governed by the combinatorics of permutations of length n. A word w=w1wn over the positive integers is packed if whenever i>2 appears as a letter of w, so does i?1. We introduce a quotient Sn of Q[x1,,xn] which is governed by the combinatorics of packed words. We relate our quotient Sn to the generalized coinvariant rings of Haglund, Rhoades, and Shimozono as well as the superspace coinvariant ring.  相似文献   

12.
《Discrete Mathematics》2022,345(8):112903
Graphs considered in this paper are finite, undirected and loopless, but we allow multiple edges. The point partition number χt(G) is the least integer k for which G admits a coloring with k colors such that each color class induces a (t?1)-degenerate subgraph of G. So χ1 is the chromatic number and χ2 is the point arboricity. The point partition number χt with t1 was introduced by Lick and White. A graph G is called χt-critical if every proper subgraph H of G satisfies χt(H)<χt(G). In this paper we prove that if G is a χt-critical graph whose order satisfies |G|2χt(G)?2, then G can be obtained from two non-empty disjoint subgraphs G1 and G2 by adding t edges between any pair u,v of vertices with uV(G1) and vV(G2). Based on this result we establish the minimum number of edges possible in a χt-critical graph G of order n and with χt(G)=k, provided that n2k?1 and t is even. For t=1 the corresponding two results were obtained in 1963 by Tibor Gallai.  相似文献   

13.
《Discrete Mathematics》2022,345(3):112717
A transversal set of a graph G is a set of vertices incident to all edges of G. The transversal number of G, denoted by τ(G), is the minimum cardinality of a transversal set of G. A simple graph G with no isolated vertex is called τ-critical if τ(G?e)<τ(G) for every edge eE(G). For any τ-critical graph G with τ(G)=t, it has been shown that |V(G)|2t by Erd?s and Gallai and that |E(G)|(t+12) by Erd?s, Hajnal and Moon. Most recently, it was extended by Gyárfás and Lehel to |V(G)|+|E(G)|(t+22). In this paper, we prove stronger results via spectrum. Let G be a τ-critical graph with τ(G)=t and |V(G)|=n, and let λ1 denote the largest eigenvalue of the adjacency matrix of G. We show that n+λ12t+1 with equality if and only if G is tK2, Ks+1(t?s)K2, or C2s?1(t?s)K2, where 2st; and in particular, λ1(G)t with equality if and only if G is Kt+1. We then apply it to show that for any nonnegative integer r, we have n(r+λ12)(t+r+12) and characterize all extremal graphs. This implies a pure combinatorial result that r|V(G)|+|E(G)|(t+r+12), which is stronger than Erd?s-Hajnal-Moon Theorem and Gyárfás-Lehel Theorem. We also have some other generalizations.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号