首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
In this paper, we study the upper bounds for ruin probabilities of an insurance company which invests its wealth in a stock and a bond. We assume that the interest rate of the bond is stochastic and it is described by a Cox-Ingersoll-Ross (CIR) model. For the stock price process, we consider both the case of constant volatility (driven by an O-U process) and the case of stochastic volatility (driven by a CIR model). In each case, under certain conditions, we obtain the minimal upper bound for ruin probability as well as the corresponding optimal investment strategy by a pure probabilistic method.  相似文献   

2.
This paper investigates an optimal investment strategy of DC pension plan in a stochastic interest rate and stochastic volatility framework. We apply an affine model including the Cox–Ingersoll–Ross (CIR) model and the Vasicek mode to characterize the interest rate while the stock price is given by the Heston’s stochastic volatility (SV) model. The pension manager can invest in cash, bond and stock in the financial market. Thus, the wealth of the pension fund is influenced by the financial risks in the market and the stochastic contribution from the fund participant. The goal of the fund manager is, coping with the contribution rate, to maximize the expectation of the constant relative risk aversion (CRRA) utility of the terminal value of the pension fund over a guarantee which serves as an annuity after retirement. We first transform the problem into a single investment problem, then derive an explicit solution via the stochastic programming method. Finally, the numerical analysis is given to show the impact of financial parameters on the optimal strategies.  相似文献   

3.
In this paper, we consider the optimal portfolio selection problem in continuous-time settings where the investor maximizes the expected utility of the terminal wealth in a stochastic market. The utility function has the structure of the HARA family and the market states change according to a Markov process. The states of the market describe the prevailing economic, financial, social and other conditions that affect the deterministic and probabilistic parameters of the model. This includes the distributions of the random asset returns as well as the utility function. We analyzed Black–Scholes type continuous-time models where the market parameters are driven by Markov processes. The Markov process that affects the state of the market is independent of the underlying Brownian motion that drives the stock prices. The problem of maximizing the expected utility of the terminal wealth is investigated and solved by stochastic optimal control methods for exponential, logarithmic and power utility functions. We found explicit solutions for optimal policy and the associated value functions. We also constructed the optimal wealth process explicitly and discussed some of its properties. In particular, it is shown that the optimal policy provides linear frontiers.  相似文献   

4.
We study an optimization problem of a family under mean–variance efficiency. The market consists of cash, a zero-coupon bond, an inflation-indexed zero-coupon bond, a stock, life insurance and income-replacement insurance. The instantaneous interest rate is modeled as the Cox–Ingersoll–Ross (CIR) model, and we use a generalized Black–Scholes model to characterize the stock and labor income. We also take into account the inflation risk and consider our problem in the real market. The goal of the family is to maximize the mean of the surplus wealth at the retirement or death of the breadwinner and minimize its variance by finding a portfolio selection. The efficient frontier and optimal strategies are derived through the dynamic programming method and the technique of solving associated nonlinear HJB equations. We also present a numerical illustration to explore the impact of economical parameters on the efficient frontier.  相似文献   

5.
In this paper we formulate a continuous-time mean–variance portfolio selection model with multiple risky assets and one liability in an incomplete market. The risky assets’ prices are governed by geometric Brownian motions while the liability evolves according to a Brownian motion with drift. The correlations between the risky assets and the liability are considered. The objective is to maximize the expected terminal wealth while minimizing the variance of the terminal wealth. We derive explicitly the optimal dynamic strategy and the mean–variance efficient frontier in closed forms by using the general stochastic linear-quadratic (LQ) control technique. Several special cases are discussed and a numerical example is also given.  相似文献   

6.
The Cox–Ingersoll–Ross (CIR) model and the Vasicek model are two well‐known single factor models of the interest spot rate. In this paper, we construct a mapping by means of which the price of a zero‐coupon bond in the CIR model may be obtained from a corresponding price in the Vasicek model. We use symmetry analysis to construct this mapping and verify it by transforming three arbitrary solutions of the pricing equation in the Vasicek model into solutions of the corresponding equation in the CIR model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper considers an optimal investment and reinsurance problem for an insurer under the mean–variance criterion. The stochastic volatility of the stock price is modeled by a Cox-Ingersoll-Ross (CIR) process. By applying a backward stochastic differential equation (BSDE) approach, we obtain a BSDE related to the underlying investment and reinsurance problem. Then solving the BSDE leads to closed-form expressions for both the efficient frontier and the efficient strategy. In the end, numerical examples are presented to analyze the economic behavior of the efficient frontier.  相似文献   

8.
由于方差算子在动态规划意义下不可分,导致随机市场中多期均值一方差模型的最优投资策略不满足时间相容性,即Bellman最优性原理.为此,首先提出了随机市场中比Bellman最优性原理更弱的时间相容性,并证明在投资区间的任意中间时刻,当投资者的财富不超过某一给定的财富阈值时,最优投资策略满足弱时间相容性;当投资者的财富超过该阈值时,最优投资策略将不再是弱时间相容的,且导致投资者变为非理性,即他会同时极小化终期财富的均值和方差.在这种情形下,通过放松自融资约束,对最优投资策略进行了修正,使得其满足:修正策略可使投资者回归理性;相对于终期财富,修正策略可以获得与最优投资策略相同的均值和方差.在策略修正过程中,投资者可以从市场中获得一个严格正的现金流.这些结果表明修正策略要优于原最优投资策略,拓展了现有关于确定市场下多期均值.方差模型的求解以及策略时间相容性的结论.  相似文献   

9.
In this paper, we consider the optimal portfolio selection problem where the investor maximizes the expected utility of the terminal wealth. The utility function belongs to the HARA family which includes exponential, logarithmic, and power utility functions. The main feature of the model is that returns of the risky assets and the utility function all depend on an external process that represents the stochastic market. The states of the market describe the prevailing economic, financial, social, political and other conditions that affect the deterministic and probabilistic parameters of the model. We suppose that the random changes in the market states are depicted by a Markov chain. Dynamic programming is used to obtain an explicit characterization of the optimal policy. In particular, it is shown that optimal portfolios satisfy the separation property and the composition of the risky portfolio does not depend on the wealth of the investor. We also provide an explicit construction of the optimal wealth process and use it to determine various quantities of interest. The return-risk frontiers of the terminal wealth are shown to have linear forms. Special cases are discussed together with numerical illustrations.  相似文献   

10.
This paper studies the optimization problem of DC pension plan under mean–variance criterion. The financial market consists of cash, bond and stock. Similar to Guan and Liang (2014), we assume that the instantaneous interest rate is an affine process including the Cox–Ingersoll–Ross (CIR) model and Vasicek model. However, we assume that the expected return of the stock follows a completely different mean-reverting process, which can well display the bear and bull features of the market, and the market price of the stock index is the Ornstein–Uhlenbeck process. The pension manager thus has to undertake the risks of interest rate and market price of stock index. Besides, a special stochastic contribution rate is formulated. The goal of the pension manager is to maximize the expected terminal value and minimize the variance of terminal value. We will use the technique developed by Guan and Liang (2014) to tackle this problem and derive the closed-forms of efficient frontier and strategies. Numerical analysis is given in the end of this paper to show the economic behavior of the efficient frontier and strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号