首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Let T be a linear transformation on the set of m × n matrices with entries in an algebraically closed field. If T maps the set of all matrices whose rank is k into itself, and ifn?3k2, then the rank of A is the rank of T(A) for every m × n matrix.  相似文献   

2.
Let Mm, n(F) denote the set of all m×n matrices over the algebraically closed field F. Let T denote a linear transformation, T:Mm, n(F)→Mm, n(F). Theorem: If max(m, n)?2k?2, k?1, and T preserves rank k matrices [i.e.?(A)=k implies ?(T(A))=k], then there exist nonsingular m×m and n×n matrices U and V respectively such that either (i) T:AUAV for all A?Mm, n(F), or (ii) m=n and T:AUAtV for all A?Mn(F), where At denotes the transpose of A.  相似文献   

3.
Let Mm,n be the set of all m × n real matrices. A matrix A ∈ Mm,n is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions T: Mm,n → Mm,n that preserve or strongly preserve row-dense matrices, i.e., T(A) is row-dense whenever A is row-dense or T(A) is row-dense if and only if A is row-dense, respectively. Similarly, a matrix A ∈ Mn,m is called a column-dense matrix if every column of A is a column-dense vector. At the end, the structure of linear preservers (strong linear preservers) of column-dense matrices is found.  相似文献   

4.
An n × n matrix A is called involutory iff A2=In, where In is the n × n identity matrix. This paper is concerned with involutory matrices over an arbitrary finite commutative ring R with identity and with the similarity relation among such matrices. In particular the authors seek a canonical set C with respect to similarity for the n × n involutory matrices over R—i.e., a set C of n × n involutory matrices over R with the property that each n × n involutory matrix over R is similar to exactly on matrix in C. Because of the structure of finite commutative rings and because of previous research, they are able to restrict their attention to finite local rings of characteristic a power of 2, and although their main result does not completely specify a canonical set C for such a ring, it does solve the problem for a special class of rings and shows that a solution to the general case necessarily contains a solution to the classically unsolved problem of simultaneously bringing a sequence A1,…,Av of (not necessarily involutory) matrices over a finite field of characteristic 2 to canonical form (using the same similarity transformation on each Ai). (More generally, the authors observe that a theory of similarity fot matrices over an arbitrary local ring, such as the well-known rational canonical theory for matrices over a field, necessarily implies a solution to the simultaneous canonical form problem for matrices over a field.) In a final section they apply their results to find a canonical set for the involutory matrices over the ring of integers modulo 2m and using this canonical set they are able to obtain a formula for the number of n × n involutory matrices over this ring.  相似文献   

5.
Let {B1,…,Bn} be a set of n rank one n×n row stochastic matrices. The next two statements are equivalent: (1) If A is an n×n nonnegative matrix, then 1 is an eigenvalue ofBkA for each k=1,…,n if and only if A is row stochastic. (2) The n×n row stochastic matrix S whose kth row is a row of Bk for k=1,…,n is nonsingular. For any set {B1, B2,…, Bp} of fewer than n row stochastic matrices of order n×n and of any rank, there exists a nonnegative n×n matrix A which is not row stochastic such that 1 is eigenvalue of every BkA, k=1,…,p.  相似文献   

6.
Let k be a field, and let S,T,S1,T1 be skew-symmetric matrices over k with S,S1 both nonsingular (if k has characteristic 2, a skew-symmetric matrix is a symmetric one with zero diagonal). It is shown that there exists a nonsingular matrix P over k with P'SP = S1, P'TP = T1 (where P' denotes the transpose of P) if and only if S-1T and S-11T1 are similar. It is also shown that a 2m×2m matrix over k can be factored as ST, with S,T skew-symmetric and S nonsingular, if and only if A is similar to a matrix direct sum BB where B is an m×m matrix over k. This is equivalent to saying that all elementary divisors of A occur with even multiplicity. An extension of this result giving necessary and sufficient conditions for a square matrix to be so expressible, without assuming that either S or T is nonsingular, is included.  相似文献   

7.
Explicit algebraic formulas for the polar decomposition of a nonsingular real 2×2 matrix A are given, as well as a classification of all integer 2×2 matrices that admit a rational polar decomposition. These formulas lead to a functional identity which is satisfied by all nonsingular real 2×2 matrices A as well as by exactly one type of exceptional matrix An for each n>2.  相似文献   

8.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

9.
Let M (n,K) be the algebra of n × n matrices over an algebraically closed field K and T:M (n,K)→M (n,K) a linear transformation with the property that T maps nonsingular (singular) matrices to nonsingular (singular) matrices. Using some elementary facts from commutative algebra we show that T is nonsingular and maps singular matrices to singular matrices (T is nonsingular or T maps all matrices to singular matrices). Using these results we obtain Marcus and Moyl's characterization [T(x) = UXVorUtXV for fixed U and V] from a result of Dieudonné's. Examples are given to show the hypothesis of algebraic closure in necessary.  相似文献   

10.
Let APm × nr, the set of all m × n nonnegative matrices having the same rank r. For matrices A in Pm × nn, we introduce the concepts of “A has only trivial nonnegative rank factorizations” and “A can have nontrivial nonnegative rank factorizations.” Correspondingly, the set Pm × nn is divided into two disjoint subsets P(1) and P(2) such that P(1)P(2) = Pm × nn. It happens that the concept of “A has only trivial nonnegative rank factorizations” is a generalization of “A is prime in Pn × nn.” We characterize the sets P(1) and P(2). Some of our results generalize some theorems in the paper of Daniel J. Richman and Hans Schneider [9].  相似文献   

11.
Let Ω n denote the set of alln×n (1, ? 1)-matrices. In 1974 E. T. H. Wang posed the following problems: Is there a decent upper bound for |perA| whenAσΩ n is nonsingular? We recently conjectured that the best possible bound is the permanent of the matrix with exactlyn?1 negative entries in the main diagonal, and affirmed that conjecture by the study of a large class of matrices in Ω n . Here we prove that this conjecture also holds for another large class of (1, ?1)-matrices which are all nonsingular. We also give an upper bound for the permanents of a class of matrices in Ω n which are not all regular.  相似文献   

12.
For an n×n Boolean matrix R, let AR={n×n matrices A over a field F such that if rij=0 then aij=0}. We show that a collection AR〈1〉,…,ARk generates all n×n matrices over F if and only if the matrix J all of whose entries are 1 can be expressed as a Boolean product of Hall matrices from the set {R〈1〉,…,Rk〉}. We show that J can be expressed as a product of Hall matrices Ri〉 if and only if ΣRi〉?Ri〉 is primitive.  相似文献   

13.
Let F m × n be the set of all m × n matrices over the field F = C or R Denote by Un (F) the group of all n × n unitary or orthogonal matrices according as F = C or F-R. A norm N() on F m ×n, is unitarily invariant if N(UAV) = N(A): for all AF m×n UU m (F). and VUn (F). We characterize those linear operators T F m × n F m × n which satisfy N (T(A)) = N(A)for all AF m × n

for a given unitarily invariant norm N(). It is shown that the problem is equivalent to characterizing those operators which preserve certain subsets in F m × n To develop the theory we prove some results concerning unitary operators on F m × n which are of independent interest.  相似文献   

14.
Let E,F be two Banach spaces,B(E,F),B+(E,F),Φ(E,F),SΦ(E,F) and R(E,F) be bounded linear,double splitting,Fredholm,semi-Frdholm and finite rank operators from E into F,respectively. Let Σ be any one of the following sets:{T ∈Φ(E,F):Index T=constant and dim N(T)=constant},{T ∈ SΦ(E,F):either dim N(T)=constant< ∞ or codim R(T)=constant< ∞} and {T ∈ R(E,F):Rank T=constant< ∞}. Then it is known that Σ is a smooth submanifold of B(E,F) with the tangent space TAΣ={B ∈ B(E,F):BN(A)-R(A) } for any A ∈Σ. However,for ...  相似文献   

15.
The simultaneous diagonalization of two real symmetric (r.s.) matrices has long been of interest. This subject is generalized here to the following problem (this question was raised by Dr. Olga Taussky-Todd, my thesis advisor at the California Institute of Technology): What is the first simultaneous block diagonal structure of a nonsingular pair of r.s. matrices ? For example, given a nonsingular pair of r.s. matrices S and T, which simultaneous block diagonalizations X′SX = diag(A1, , Ak), X′TX = diag(B1,, Bk) with dim Ai = dim Bi and X nonsingular are possible for 1 ? k ? n; and how well defined is a simultaneous block diagonalization for which k, the number of blocks, is maximal? Here a pair of r.s. matrices S and T is called nonsingular if S is nonsingular.If the number of blocks k is maximal, then one can speak of the finest simultaneous block diagonalization of S and T, since then the sizes of the blocks Ai are uniquely determined (up to permutations) by any set of generators of the pencil P(S, T) = {aS + bT|a, tb ε R} via the real Jordan normal form of S?1T. The proof uses the canonical pair form theorem for nonsingular pairs of r.s. matrices. The maximal number k and the block sizes dim Ai are also determined by the factorization over C of ? (λ, μ) = det(λS + μT) for λ, μ ε R.  相似文献   

16.
Let T be a linear operator on the space of all m×n matrices over any field. we prove that if T maps rank-2 matrices to rank-2 matrices then there exist nonsingular matrices U and V such that either T(X)=UXV for all matrices X, or m=n and T(X)=UXtV for all matrices X where Xt denotes the transpose of X.  相似文献   

17.
Suppose ? is a right Ore domain with identity 1. Let ? m×n denote the set of all m×n matrices over ?. In this paper, we give the necessary and sufficient conditions for the existence and explicit representations of the group inverses of the block matrices in the following two cases, respectively:
  1. A 2=A and CA=C;
  2. r(C)≤r(B) and A=DC,
where A∈? n×n , B∈? n×m , C∈? m×n , D∈? n×m . The paper’s results generalize some relative results of Liu and Yang (Appl. Math. Comput. 218:8978–8986, 2012).  相似文献   

18.
Given two Banach spaces E, F, let B(E, F) be the set of all bounded linear operators from E into F, and R(E, F) the set of all operators in B(E, F) with finite rank. It is well-known that B(? n ) is a Banach space as well as an algebra, while B(? n , ? m ) for mn, is a Banach space but not an algebra; meanwhile, it is clear that R(E, F) is neither a Banach space nor an algebra. However, in this paper, it is proved that all of them have a common property in geometry and topology, i.e., they are all a union of mutual disjoint path-connected and smooth submanifolds (or hypersurfaces). Let Σ r be the set of all operators of finite rank r in B(E, F) (or B(? n , ? m )). In fact, we have that 1) suppose Σ r B(? n , ? m ), and then Σ r is a smooth and path-connected submanifold of B(? n , ? m ) and dimΣ r = (n + m)r ? r 2, for each r ∈ [0, min{n,m}; if mn, the same conclusion for Σ r and its dimension is valid for each r ∈ [0, min{n, m}]; 2) suppose Σ r B(E, F), and dimF = ∞, and then Σ r is a smooth and path-connected submanifold of B(E, F) with the tangent space T A Σ r = {BB(E, F): BN(A) ? R(A)} at each A ∈ Σ r for 0 ? r ? ∞. The routine methods for seeking a path to connect two operators can hardly apply here. A new method and some fundamental theorems are introduced in this paper, which is development of elementary transformation of matrices in B(? n ), and more adapted and simple than the elementary transformation method. In addition to tensor analysis and application of Thom’s famous result for transversility, these will benefit the study of infinite geometry.  相似文献   

19.
Let A be an m-by-n matrix, m?n, and let Pr and Pc be permutation matrices of order m and n respectively. Suppose PrAPc is reduced to upper trapezoidal form (RO) using Givens rotations, where R is n by n and upper triangular. The sparsity structure of R depends only on Pc. For a fixed Pc, the number of arithmetic operations required to compute R depends on Pr. In this paper, we consider row-ordering strategies which are appropriate when Pc is obtained from nested-dissection orderings of ATA. Recently, it was shown that so-called “width-2” nested-dissection orderings of ATA could be used to simultaneously obtain good row and column orderings for A. In this series of papers, we show that the conventional (width-1) nested-dissection orderings can also be used to induce good row orderings. In this first paper, we analyze the application of Givens rotations to a sparse matrix A using a bipartite-graph model.  相似文献   

20.
Let X and Y be m×n matrices over a field F such that YTX is nonsingular, and let Λ and Λ′ be sets of n-square matrices over F. Solutions A to the simultaneous equations AX = XK and YTA = K?YT where K?Λ and K? ? Λ′ are considered. It is shown that many properties of doubly stochastic matrices over a field have a natural generalization in terms of the set Δ(Λ,Λ′) of all such solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号