首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
Conceptual understanding of arithmetic average includes both an understanding of the computational algorithm and the statistical aspects of the concept. This study focused on the examination of 250 sixth-grade students' understanding of the arithmetic average by assessing their understanding of the computational algorithm. The results of the study showed that the majority of the students knew the “add-them-all-up-and-divide” averaging algorithm, but only about half of the students were able to correctly apply the algorithm to solve a contextualized average problem. Students were able to use various solution strategies and representations to solve the average problem. Those who used algebraic and arithmetic representations were better problem solvers than those who used pictorial and verbal representations. This study not only suggests that the average concept is more complex than the simplicity suggested by the computational algorithm, but also indicates the need for teaching the concept of average, both as a statistical idea for describing and making sense of data sets and as a computational algorithm for solving problems.  相似文献   

2.
This study examined U.S. and Chinese teachers' constructing, knowing, and evaluating representations to teach mathematics. All Chinese lesson plans are very similar, because they are all based on the Chinese national unified curriculum in mathematics. However, the U.S. lesson plans are extremely varied, even for those teachers from the same school. The Chinese teachers' lessons are very detailed; the U.S. teachers' lesson plans have exclusively adopted the “outline and worksheet” format. In the Chinese lesson plans, concrete representations are used exclusively to mediate students' understanding of the concept of average. In U.S. lessons, concrete representations are not only used to model the averaging processes to foster students' understanding of the concept, but they are also used to generate data. The U.S. teachers are much more likely than the Chinese teachers to predict drawing and guess-and-check strategies. For some problems, the Chinese teachers are much more likely than are the U.S. teachers to predict algebraic approaches. For the responses using conventional strategies, both the U.S. and Chinese teachers gave them high and almost identical scores. If a response involved a drawing or an estimate of an answer, the Chinese teachers usually gave a relatively lower score, even though the strategy is appropriate for the correct answer, because it is less generalizable. This study contributed to our understanding of the cross-national differences between U.S. and Chinese students' mathematical thinking. It also contributed to our understanding about teachers' beliefs from a cross-cultural perspective.  相似文献   

3.
This study examined U.S. and Chinese teachers' constructing, knowing, and evaluating representations to teach mathematics. All Chinese lesson plans are very similar, because they are all based on the Chinese national unified curriculum in mathematics. However, the U.S. lesson plans are extremely varied, even for those teachers from the same school. The Chinese teachers' lessons are very detailed; the U.S. teachers' lesson plans have exclusively adopted the "outline and worksheet" format. In the Chinese lesson plans, concrete representations are used exclusively to mediate students' understanding of the concept of average. In U.S. lessons, concrete representations are not only used to model the averaging processes to foster students' understanding of the concept, but they are also used to generate data. The U.S. teachers are much more likely than the Chinese teachers to predict drawing and guess-and-check strategies. For some problems, the Chinese teachers are much more likely than are the U.S. teachers to predict algebraic approaches. For the responses using conventional strategies, both the U.S. and Chinese teachers gave them high and almost identical scores. If a response involved a drawing or an estimate of an answer, the Chinese teachers usually gave a relatively lower score, even though the strategy is appropriate for the correct answer, because it is less generalizable. This study contributed to our understanding of the cross-national differences between U.S. and Chinese students' mathematical thinking. It also contributed to our understanding about teachers' beliefs from a cross-cultural perspective.  相似文献   

4.
This study compared one lesson across four U.S. “traditional” textbook series, two U.S. reform‐based textbook series, and one Chinese mathematics textbook series in teaching the connection between multiplication and division. The results showed the differences across U.S. and Chinese lessons in both the teaching and the practice parts of the lesson across three dimensions (i.e., problem schemata, response requirement, and algebra readiness). In particular, the Chinese lesson's penetrating analysis or explanation of the topic is reflected in its deliberately constructed examples and wide range of problems (pertaining to problem types and difficulty levels) present in the teaching and practice sections of the lesson. None of analyzed U.S. lessons are comparable with the Chinese lesson with respect to the breadth and depth in teaching the topic. A deliberate emphasis, both arithmetically and algebraically, on problem schema acquisition as found in the Chinese lesson represents a promotion of symbolic or higher order of conceptual understanding. The findings are discussed within the context of teaching big ideas through problem schemata acquisition and the importance of symbolic level of conceptual understanding.  相似文献   

5.
This classroom scholarship report is based on the teaching experience using Davydov's mathematics curriculum, which was developed in the former Soviet Union. While “from arithmetic to algebra” is the normally accepted instructional sequence in school mathematics, Davydov's curriculum is laid out “from algebra to arithmetic,” focusing on algebraic thinking from the very beginning of the elementary grades. The purpose of this report is not to provide a definitive conclusion about which curriculum or sequence is better nor to address which instructional strategy is right in all circumstances. Rather, it is to explore how primary grade students develop their own conceptual understanding while confronting difficulties met within a specific context. This report provides actual classroom episodes from working with a group of first graders and describes dynamic interactions between the teacher and children while they discuss the use of algebraic expressions and understand the meaning behind them.  相似文献   

6.
This article offers a reflection on the findings of three PhD studies, in the domains of, respectively, subtraction under 100, fractions, and algebra, which independently of each other showed that Dutch students' proficiency fell short of what might be expected of reform in mathematics education aiming at conceptual understanding. In all three cases, the disappointing results appeared to be caused by a deviation from the original intentions of the reform, resulting from the textbooks' focus on individual tasks. It is suggested that this “task propensity”, together with a lack of attention for more advanced conceptual mathematical goals, constitutes a general barrier for mathematics education reform. This observation transcends the realm of textbooks, since more advanced conceptual mathematical understandings are underexposed as curriculum goals. It is argued that to foster successful reform, a conscious effort is needed to counteract task propensity and promote more advanced conceptual mathematical understandings as curriculum goals.  相似文献   

7.
The U.S. generally has a less intense mathematics curriculum in the middle school grades than China. Some factors contributing to the lower intensity in the U.S. mathematics curriculum are textbooks with extensive drill, repetition of content, lack of challenging problem solving, lower curricular and cultural expectations, and ability grouping. In comparison, China utilizes challenging problem solving, sequential development of content without repetition, expectations of hard work, high values for mathematics by the curriculum and culture, and a common curriculum for all as aspects of mathematics instruction. The U.S. is taking a positive direction in its mathematics curriculum with the use of technology and reform while compulsory education is mandating that the theoretical depth of middle school curriculums in China be lowered for all of its students in grades 1–9.  相似文献   

8.
Analysing the responses of 311 sixth-grade Chinese students and 232 sixth-grade US students to two problems involving arithmetic average, this study explored students' understanding and representation of the averaging algorithm from a cross-national perspective. Results of the study show that Chinese students were more successful than US students in obtaining correct numerical answers to each of the problems, but US and Chinese students had similar cognitive difficulties in solving the second task. The difficulties were not due to their lack of procedural knowledge of the averaging algorithm, rather due to their lack of conceptual understanding of the algorithm. There were significant differences between the US and Chinese students in their solution representations of the two average problems. Chinese students were more likely to use algebraic representations than US students; while US students were more likely to use pictorial or verbal representations. US and Chinese students' use of representations are related to their mathematical problem-solving performance. Students who used more advanced representations were better problem solvers. The findings of the study suggest that Chinese students' superior performance on the averaging problems is partly due to their use of advanced representations (e.g. algebraic).  相似文献   

9.
Peide Liu  Fei Teng 《Complexity》2016,21(5):277-290
On the basis of the normal intuitionistic fuzzy numbers (NIFNs), we proposed the normal interval‐valued intuitionistic fuzzy numbers (NIVIFNs) in which the values of the membership and nonmembership were extended to interval numbers. First, the definition, the properties, the score function and accuracy function of the NIVIFNs are briefly introduced, and the operational laws are defined. Second, some aggregation operators based on the NIVIFNs are proposed, such as normal interval‐valued intuitionistic fuzzy weighted arithmetic averaging operator, normal interval‐valued intuitionistic fuzzy ordered weighted arithmetic averaging operator, normal interval‐valued intuitionistic fuzzy hybrid weighted arithmetic averaging operator, normal interval‐valued intuitionistic fuzzy weighted geometric averaging operator, normal interval‐valued intuitionistic fuzzy ordered weighted geometric averaging operator, normal interval‐valued intuitionistic fuzzy hybrid weighted geometric averaging operator, and normal interval‐valued intuitionistic fuzzy generalized weighted averaging operator, normal interval‐valued intuitionistic fuzzy generalized ordered weighted averaging operator, normal interval‐valued intuitionistic fuzzy generalized hybrid weighted averaging operator, and some properties of these operators, such as idempotency, monotonicity, boundedness, commutativity, are studied. Further, an approach to the decision making problems with the NIVIFNs is established. Finally, an illustrative example is given to verify the developed approach and to demonstrate its practicality and effectiveness. © 2015 Wiley Periodicals, Inc. Complexity 21: 277–290, 2016  相似文献   

10.
We previously introduced the concept of “set‐complexity,” based on a context‐dependent measure of information, and used this concept to describe the complexity of gene interaction networks. In a previous paper of this series we analyzed the set‐complexity of binary graphs. Here, we extend this analysis to graphs with multicolored edges that more closely match biological structures like the gene interaction networks. All highly complex graphs by this measure exhibit a modular structure. A principal result of this work is that for the most complex graphs of a given size the number of edge colors is equal to the number of “modules” of the graph. Complete multipartite graphs (CMGs) are defined and analyzed. The relation between complexity and structure of these graphs is examined in detail. We establish that the mutual information between any two nodes in a CMG can be fully expressed in terms of entropy, and present an explicit expression for the set complexity of CMGs (Theorem 3). An algorithm for generating highly complex graphs from CMGs is described. We establish several theorems relating these concepts and connecting complex graphs with a variety of practical network properties. In exploring the relation between symmetry and complexity we use the idea of a similarity matrix and its spectrum for highly complex graphs. © 2012 Wiley Periodicals, Inc. Complexity, 2012  相似文献   

11.
G. Grammel 《PAMM》2003,2(1):412-413
The Takens equation for modeling strong elastic constraints in mechanical systems is considered. Using averaging techniques, approximation orders for “passing through resonance” problems are provided. For “thick” resonance sets, the relevance of third order resonances is shown via a multi‐valued averaging approach.  相似文献   

12.
The computational complexity of discrete problems concerning the enumeration of solutions is addressed. The concept of an asymptotically efficient algorithm is introduced for the dualization problem, which is formulated as the problem of constructing irreducible coverings of a Boolean matrix. This concept imposes weaker constraints on the number of “redundant” algorithmic steps as compared with the previously introduced concept of an asymptotically optimal algorithm. When the number of rows in a Boolean matrix is no less than the number of columns (in which case asymptotically optimal algorithms for the problem fail to be constructed), algorithms based on the polynomialtime-delay enumeration of “compatible” sets of columns of the matrix is shown to be asymptotically efficient. A similar result is obtained for the problem of searching for maximal conjunctions of a monotone Boolean function defined by a conjunctive normal form.  相似文献   

13.
Difference schemes for linear hyperbolic systems are considered. As a main result, a weak derivative form (WDF) of the governing equations is derived, which is also valid near flow discontinuities. The occurrence of one‐sided derivatives in the WDF structure indicated how to difference near discontinuities. When first‐order differencing is applied to the WDF result, the (linearly identical) schemes by Godunov, Roe, and Steger‐Warming are reproduced. The extension to nonlinear systems is via a local linearization. Choosing Roe's averaging reduces the WDF algorithm to Roe's scheme, whereas other nonlinear WDF schemes are possible. The suitability of various kinds of averaging is numerically investigated. For weak shocks a surprising lack of sensitivity of the method to a particular averaging is exhibited. However, for strong shocks and where the ordinary arithmetic average is used, a slightly more pronounced difference in performance exists between Roe's scheme and WDF. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

14.
This article concludes the development and summarizes a new approach to dual‐primal domain decomposition methods (DDM), generally referred to as “the multipliers‐free dual‐primal method.” Contrary to standard approaches, these new dual‐primal methods are formulated without recourse to Lagrange‐multipliers. In this manner, simple and unified matrix‐expressions, which include the most important dual‐primal methods that exist at present are obtained, which can be effectively applied to floating subdomains, as well. The derivation of such general matrix‐formulas is independent of the partial differential equations that originate them and of the number of dimensions of the problem. This yields robust and easy‐to‐construct computer codes. In particular, 2D codes can be easily transformed into 3D codes. The systematic use of the average and jump matrices, which are introduced in this approach as generalizations of the “average” and “jump” of a function, can be effectively applied not only at internal‐boundary‐nodes but also at edges and corners. Their use yields significant advantages because of their superior algebraic and computational properties. Furthermore, it is shown that some well‐known difficulties that occur when primal nodes are introduced are efficiently handled by the multipliers‐free dual‐primal method. The concept of the Steklov–Poincaré operator for matrices is revised by our theory and a new version of it, which has clear advantages over standard definitions, is given. Extensive numerical experiments that confirm the efficiency of the multipliers‐free dual‐primal methods are also reported here. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

15.
Option pricing models are an important part of financial markets worldwide. The PDE formulation of these models leads to analytical solutions only under very strong simplifications. For more general models the option price needs to be evaluated by numerical techniques. First, based on an ideal pure diffusion process for two risky asset prices with an additional path-dependent variable for continuous arithmetic average, we present a general form of PDE for pricing of Asian option contracts on two assets. Further, we focus only on one subclass—Asian options with floating strike—and introduce the concept of the dimensionality reduction with respect to the payoff leading to PDE with two spatial variables. Then the numerical option pricing scheme arising from the discontinuous Galerkin method is developed and some theoretical results are also mentioned. Finally, the aforementioned model is supplemented with numerical results on real market data.  相似文献   

16.
In this paper is reported the extent of textbook use by 39 middle school mathematics teachers in six states, 17 utilizing a textbook series developed with funding from the National Science Foundation (NSF‐funded) and 22 using textbooks developed by commercial publishers (publisher‐generated). Results indicate that both sets of teachers placed significantly higher emphasis on Number and Operation, often at the expense of other content strands. Location of topics within a textbook represented an oversimplified explanation of what mathematics gets taught or omitted. Most teachers using an NSF‐funded curriculum taught content intended for students in a different (lower) grade, and both sets of teachers supplemented with skill‐building and “practice” worksheets. Implications for documenting teachers' “fidelity of implementation” ( National Research Council, 2004 ) are offered.  相似文献   

17.
A new concept called “Disparity” between two distributions is introduced, which could be useful in the study of stochastic processes. It includes the concept of “Activity” introduced earlier by the author.  相似文献   

18.
Graph labeling of a graph was introduced by Rosa [A. Rosa, “Theory of graphs” (International Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355] and the concept of an edge graceful labeling was introduced by Lo [S. Lo, “On edge graceful labeling of graphs”, Congress Numer., 50(1985) 231-241]. We introduced a new type of labeling called an edge - odd graceful labeling (EOGL)[A. Solairaju and K. Chithra, “Edge-Odd graceful labeling of some graphs”, proceedings of the ICMCS, Vol.1, 101-107(2008)]. In this paper, we proved that the Edge - Odd Graceful Labeling of some graphs.  相似文献   

19.
The arithmetic mean is the most commonly used measure of central tendancy; nevertheless, many students who can add all the elements of a data set and then divide that sum by the number of elements do not truly understand the concept of mean. This article presents four activities designed to help elementary and middle school students develop a concept of mean. To bring about a desirable level of understanding, all computational formulae and algorithms in mathematics should be preceded by experience emphasizing conceptual understanding. Since that is not the normal instructional sequence for the arithmetic mean, the activities presented in the article assume previous exposure to the computational algorithm for the arithmetic mean.  相似文献   

20.
Euclidean “(size-and-)shape spaces” are spaces of configurations of points in R N modulo certain equivalences. In many applications one seeks to average a sample of shapes, or sizes-and-shapes, thought of as points in one of these spaces. This averaging is often done using algorithms based on generalized Procrustes analysis (GPA). These algorithms have been observed in practice to converge rapidly to the Procrustean mean (size-and-)shape, but proofs of convergence have been lacking. We use a general Riemannian averaging (RA) algorithm developed in [Groisser, D. (2004) “Newton's method, zeroes of vector fields, and the Riemannian center of mass”, Adv. Appl. Math. 33, pp. 95–135] to prove convergence of the GPA algorithms for a fairly large open set of initial conditions, and estimate the convergence rate. On size-and-shape spaces the Procrustean mean coincides with the Riemannian average, but not on shape spaces; in the latter context we compare the GPA and RA algorithms and bound the distance between the averages to which they converge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号