首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work is to introduce several proposals for combining two metaheuristics: variable neighborhood search (VNS) and estimation of distribution algorithms (EDAs). Although each of these metaheuristics has been previously hybridized in several ways, this paper constitutes the first attempt to combine both optimization methods. The different ways of combining VNS and EDAs will be classified into three groups. In the first group, we will consider combinations where the philosophy underlying VNS is embedded in EDAs. Considering different neighborhood spaces (points, populations or probability distributions), we will obtain instantiations for the approaches in this group. The second group of algorithms is obtained when probabilistic models (or any other machine learning paradigm) are used in order to exploit the good and bad shakes of the randomly generated solutions in a reduced variable neighborhood search. The last group of algorithms contains the results of alternating VNS and EDAs. An application of the first approach is presented in the protein side chain placement problem. The results obtained show the superiority of the hybrid algorithm in comparison with EDAs and VNS.  相似文献   

2.
This paper presents a constraint programming approach for a batch processing machine on which a finite number of jobs of non-identical sizes must be scheduled. A parallel batch processing machine can process several jobs simultaneously and the objective is to minimize the maximal lateness. The constraint programming formulation proposed relies on the decomposition of the problem into finding an assignment of the jobs to the batches, and then minimizing the lateness of the batches on a single machine. This formulation is enhanced by a new optimization constraint which is based on a relaxed problem and applies cost-based domain filtering techniques. Experimental results demonstrate the efficiency of cost-based domain filtering techniques. Comparisons to other exact approaches clearly show the benefits of the proposed approach: it can optimally solve problems that are one order of magnitude greater than those solved by a mathematical formulation or by a branch-and-price.  相似文献   

3.
Modeling systems are very important for bringing mathematical programming software to nonexpert users, but few nonlinear programming algorithms are today linked to a modeling system. The paper discussed the advantages of linking modeling systems with nonlinear programming. Traditional algorithms can be linked using black-box function and derivatives evaluation routines for local optimization. Methods for generating this information are discussed. More sophisticated algorithms can get access to almost any type of information: interval evaluations and constraint restructuring for detailed preprocessing, second order information for sequential quadratic programming and interior point methods, and monotonicity and convex relaxations for global optimization. Some of the sophisticated information is available today; the rest can be generated on demand.  相似文献   

4.
This paper discusses the minimal area rectangular packing problem which is to pack a given set of rectangles into a rectangular container of minimal area such that no two rectangles overlap. Current approaches for this problem rely on metaheuristics like simulated annealing, on constraint programming or on non-linear models. Difficulties arise from the non-convexity and the combinatorial complexity. We investigate different mathematical programming approaches for this and introduce a novel approach based on non-linear optimization and the “tunneling effect” achieved by a relaxation of the non-overlapping constraints. We compare our optimization algorithm to a simulated annealing and a constraint programming approach and show that our approach is competitive. Additionally, since it is easy to extend, it is also applicable to a variety of related problems.  相似文献   

5.
A Taxonomy of Hybrid Metaheuristics   总被引:22,自引:0,他引:22  
Hybrid metaheuristics have received considerable interest these recent years in the field of combinatorial optimization. A wide variety of hybrid approaches have been proposed in the literature. In this paper, a taxonomy of hybrid metaheuristics is presented in an attempt to provide a common terminology and classification mechanisms. The taxonomy, while presented in terms of metaheuristics, is also applicable to most types of heuristics and exact optimization algorithms.As an illustration of the usefulness of the taxonomy an annoted bibliography is given which classifies a large number of hybrid approaches according to the taxonomy.  相似文献   

6.
One of the most promising approaches for clustering is based on methods of mathematical programming. In this paper we propose new optimization methods based on DC (Difference of Convex functions) programming for hierarchical clustering. A bilevel hierarchical clustering model is considered with different optimization formulations. They are all nonconvex, nonsmooth optimization problems for which we investigate attractive DC optimization Algorithms called DCA. Numerical results on some artificial and real-world databases are reported. The results demonstrate that the proposed algorithms are more efficient than related existing methods.  相似文献   

7.
In power production problems maximum power and minimum entropy production and inherently connected by the Gouy–Stodola law. In this paper various mathematical tools are applied in dynamic optimization of power-maximizing paths, with special attention paid to nonlinear systems. Maximum power and/or minimum entropy production are governed by Hamilton–Jacobi–Bellman (HJB) equations which describe the value function of the problem and associated controls. Yet, in many cases optimal relaxation curve is non-exponential, governing HJB equations do not admit classical solutions and one has to work with viscosity solutions. Systems with nonlinear kinetics (e.g. radiation engines) are particularly difficult, thus, discrete counterparts of continuous HJB equations and numerical approaches are recommended. Discrete algorithms of dynamic programming (DP), which lead to power limits and associated availabilities, are effective. We consider convergence of discrete algorithms to viscosity solutions of HJB equations, discrete approximations, and the role of Lagrange multiplier λ associated with the duration constraint. In analytical discrete schemes, the Legendre transformation is a significant tool leading to original work function. We also describe numerical algorithms of dynamic programming and consider dimensionality reduction in these algorithms. Indications showing the method potential for other systems, in particular chemical energy systems, are given.  相似文献   

8.
In this paper, we illustrate how data envelopment analysis (DEA) can be used to aid interactive classification. We assume that the scoring function for the classification problem is known. We use DEA to identify difficult to classify cases from a database and present them to the decision-maker one at a time. The decision-maker assigns a class to the presented case and based on the decision-maker class assignment, a tradeoff cutting plane is drawn using the scoring function and decision-maker’s input. The procedure continues for finite number of iterations and terminates with the final discriminant function. We also show how a hybrid DEA and mathematical programming approach can be used when user interaction is not desired. For non-interactive case, we compare a hybrid DEA and mathematical programming based approach with several statistical and machine learning approaches, and show that the hybrid approach provides competitive performance when compared to the other machine learning approaches.  相似文献   

9.
Hybrid metaheuristics have been applied with success in solving many real-world problems. This work introduces hybrid metaheuristics to the field of kinematics problem, in particular, for solving the forward kinematics of the 3RPR parallel manipulator. It implements a combination of genetic algorithms and simulated annealing into two popular hybrid metaheuristic techniques. They are combined as teamwork and relay collaborative hybrid metaheuristics and compared to the performance of genetic algorithms and simulated annealing alone. The results show that the meta-heuristic approaches give robust and high quality solutions. Genetic algorithms and teamwork collaborative metaheuristics showed better performance than simulated annealing and relay collaborative metaheuristics. The given metaheuristic methods obtain all the unique solutions and comparisons with algebraic methods show promising results.  相似文献   

10.
Surrogate constraint methods have been embedded in a variety of mathematical programming applications over the past thirty years, yet their potential uses and underlying principles remain incompletely understood by a large segment of the optimization community. In a number of significant domains of combinatorial optimization, researchers have produced solution strategies without recognizing that they can be derived as special instances of surrogate constraint methods. Once the connection to surrogate constraint ideas is exposed, additional ways to exploit this framework become visible, frequently offering opportunities for improvement.We provide a tutorial on surrogate constraint approaches for optimization in graphs, illustrating the key ideas by reference to independent set and graph coloring problems, including constructions for weighted independent sets which have applications to associated covering and weighted maximum clique problems. In these settings, the surrogate constraints can be generated relative to well-known packing and covering formulations that are convenient for exposing key notions. The surrogate constraint approaches yield widely used heuristics for identifying independent sets as simple special cases, and also afford previously unidentified heuristics that have greater power in these settings. Our tutorial also shows how the use of surrogate constraints can be placed within the context of vocabulary building strategies for independent set and coloring problems, providing a framework for applying surrogate constraints that can be used in other applications.At a higher level, we show how to make use of surrogate constraint information, together with specialized algorithms for solving associated sub-problems, to obtain stronger objective function bounds and improved choice rules for heuristic or exact methods. The theorems that support these developments yield further strategies for exploiting surrogate constraint relaxations, both in graph optimization and integer programming generally.  相似文献   

11.
Variable neighborhood search (VNS) and Greedy randomized adaptive search procedure (GRASP) are among the well studied local search based metaheuristics providing good results for many combinatorial optimization problems throughout the last decade. While they are usually explored in different environments one may encounter quite obvious commonalities. Based on previous successful applications of these two types of metaheuristics on various network design problems in telecommunications, we further enhance these approaches by incorporating ideas from the pilot method. The different heuristics are compared among each other as well as against objective function values obtained from a mathematical programming formulation based on a commercial solver. The problem instances cover a large variety of networks and demand patterns.  相似文献   

12.
Metaheuristics: A bibliography   总被引:6,自引:0,他引:6  
Metaheuristics are the most exciting development in approximate optimization techniques of the last two decades. They have had widespread successes in attacking a variety of difficult combinatorial optimization problems that arise in many practical areas. This bibliography provides a classification of a comprehensive list of 1380 references on the theory and application of metaheuristics. Metaheuristics include but are not limited to constraint logic programming; greedy random adaptive search procedures; natural evolutionary computation; neural networks; non-monotonic search strategies; space-search methods; simulated annealing; tabu search; threshold algorithms and their hybrids. References are presented in alphabetical order under a number of subheadings.  相似文献   

13.
Constraint programming models appear in many sciences including mathematics, engineering and physics. These problems aim at optimizing a cost function joint with some constraints. Fuzzy constraint programming has been developed for treating uncertainty in the setting of optimization problems with vague constraints. In this paper, a new method is presented into creation fuzzy concept for set of constraints. Unlike to existing methods, instead of constraints with fuzzy inequalities or fuzzy coefficients or fuzzy numbers, vague nature of constraints set is modeled using learning scheme with adaptive neural-fuzzy inference system (ANFIS). In the proposed approach, constraints are not limited to differentiability, continuity, linearity; also the importance degree of each constraint can be easily applied. Unsatisfaction of each weighted constraint reduces membership of certainty for set of constraints. Monte-Carlo simulations are used for generating feature vector samples and outputs for construction of necessary data for ANFIS. The experimental results show the ability of the proposed approach for modeling constrains and solving parametric programming problems.  相似文献   

14.
This paper presents constraint programming (CP) as a natural formalism for modelling problems, and as a flexible platform for solving them. CP has a range of techniques for handling constraints including several forms of propagation and tailored algorithms for global constraints. It also allows linear programming to be combined with propagation and novel and varied search techniques which can be easily expressed in CP. The paper describes how CP can be used to exploit linear programming within different kinds of hybrid algorithm. In particular it can enhance techniques such as Lagrangian relaxation, Benders decomposition and column generation.  相似文献   

15.
16.
The organization of a specialized transportation system to perform transports for elderly and handicapped people is usually modeled as dial-a-ride problem. Users place transportation requests with specified pickup and delivery locations and times. The requests have to be completed under user inconvenience considerations by a specified fleet of vehicles. In the dial-a-ride problem, the aim is to minimize the total travel times respecting the given time windows, the maximum user ride times, and the vehicle restrictions. This paper introduces a dynamic programming algorithm for the dial-a-ride problem and demonstrates its effective application in (hybrid) metaheuristic approaches. Compared to most of the works presented in literature, this approach does not make use of any (commercial) solver. We present an exact dynamic programming algorithm and a dynamic programming based metaheuristic, which restricts the considered solution space. Then, we propose a hybrid metaheuristic algorithm which integrates the dynamic programming based algorithms into a large neighborhood framework. The algorithms are tested on a given set of benchmark instances from the literature and compared to a state-of-the-art hybrid large neighborhood search approach.  相似文献   

17.
In this article, we propose an integrated formulation of the combined production and material handling scheduling problems. Traditionally, scheduling problems consider the production machines as the only constraining resource. This is however no longer true as material handling vehicles are becoming more and more valuable resources requiring important investments. Their operations should be optimized and above all synchronized with machine operations. In the problem addressed in this paper, a job shop context is considered. Machines and vehicles are both considered as constraining resources. The integrated scheduling problem is formulated as a mathematical programming model and as a constraint programming model which are compared for optimally solving a series of test problems. A commercial software (ILOG OPLStudio) was used for modeling and testing both models.  相似文献   

18.
It is shown that hybrid computation facilitates the solving of problems in the field of mathematical programming. First, the most important features of hybrid computation are discussed. The main part of the paper deals with examples of computational methods in which hybrid computation can be applied succesfully. The main concentration is on constrained static parameter optimization, where for brevity only penalty function techniques are considered. The use of a penalty function having an extra parameter is discussed rather extensively.  相似文献   

19.
In practical applications of mathematical programming it is frequently observed that the decision maker prefers apparently suboptimal solutions. A natural explanation for this phenomenon is that the applied mathematical model was not sufficiently realistic and did not fully represent all the decision makers criteria and constraints. Since multicriteria optimization approaches are specifically designed to incorporate such complex preference structures, they gain more and more importance in application areas as, for example, engineering design and capital budgeting. The aim of this paper is to analyze optimization problems both from a constrained programming and a multicriteria programming perspective. It is shown that both formulations share important properties, and that many classical solution approaches have correspondences in the respective models. The analysis naturally leads to a discussion of the applicability of some recent approximation techniques for multicriteria programming problems for the approximation of optimal solutions and of Lagrange multipliers in convex constrained programming. Convergence results are proven for convex and nonconvex problems.  相似文献   

20.
This paper presents the application of simulated annealing (SA), Tabu search (TS) and hybrid TS–SA to solve a real-world mining optimisation problem called open pit block sequencing (OPBS). The OPBS seeks the optimum extraction sequences under a variety of geological and technical constraints over short-term horizons. As industry-scale OPBS instances are intractable for standard mixed integer programming (MIP) solvers, SA, TS and hybrid TS–SA are developed to solve the OPBS problem. MIP exact solution is also combined with the proposed metaheuristics to polish solutions in feasible neighbourhood moves. Extensive sensitivity analysis is conducted to analyse the characteristics and determine the optimum sets of values of the proposed metaheuristics algorithms’ parameters. Computational experiments show that the proposed algorithms are satisfactory for solving the OPBS problem. Additionally, this comparative study shows that the hybrid TS–SA is superior to SA or TS in solving the OPBS problem in several aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号