首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Comparison of turbulence models in simulating swirling pipe flows   总被引:1,自引:0,他引:1  
Swirling flow is a common phenomenon in engineering applications. A numerical study of the swirling flow inside a straight pipe was carried out in the present work with the aid of the commercial CFD code fluent. Two-dimensional simulations were performed, and two turbulence models were used, namely, the RNG kε model and the Reynolds stress model. Results at various swirl numbers were obtained and compared with available experimental data to determine if the numerical method is valid when modeling swirling flows. It has been shown that the RNG kε model is in better agreement with experimental velocity profiles for low swirl, while the Reynolds stress model becomes more appropriate as the swirl is increased. However, both turbulence models predict an unrealistic decay of the turbulence quantities for the flows considered here, indicating the inadequacy of such models in simulating developing pipe flows with swirl.  相似文献   

3.
We analyse various perturbations and projections of Kalman–Bucy semigroups and Riccati equations. For example, covariance inflation-type perturbations and localisation methods (projections) are common in the ensemble Kalman filtering literature. In the limit of these ensemble methods, the regularised sample covariance tends toward a solution of a perturbed/projected Riccati equation. With this motivation, results are given characterising the error between the nominal and regularised Riccati flows and Kalman–Bucy filtering distributions. New projection-type models are also discussed; e.g. Bose–Mesner projections. These regularisation models are also of interest on their own, and in, e.g., differential games, control of stochastic/jump processes, and robust control.  相似文献   

4.
In this paper the multi-mode resource-constrained project scheduling problem with discounted cash flows is considered. A project is represented by an activity-on-node (AoN) network. A positive cash flow is associated with each activity. Four different payment models are considered: lump-sum payment at the completion of the project, payments at activities' completion times, payments at equal time intervals and progress payments. The objective is to maximize the net present value of all cash flows of the project. Local search metaheuristics: simulated annealing and tabu search are proposed to solve this strongly NP-hard problem. A comprehensive computational experiment is described, performed on a set of instances based on standard test problems constructed by the ProGen project generator, where, additionally, the activities' cash flows are generated randomly with the uniform distribution. The metaheuristics are computationally compared, the results are analyzed and discussed and some conclusions are given.  相似文献   

5.
6.
In this paper two models of queuing systems with failures and several types of input flows are considered. These models can simulate the functioning of cellular communications networks under various control regimes. For stationary probabilities of service process (including failed ones) the closed form and the effective calculating algorithms are obtained. The results are used to control the input flows in an optimal way. This research was supported by the INTAS (grant 96-0828).  相似文献   

7.
Models that are used for the simulation of two-phase flows in coastal dynamics make extensive use of empirical data. The main focus of this investigation is to develop models for specific aspects of two-phase flows that are based on physical principles in order to reduce the use of such data. In this study several existing empirically based drag force models are discussed. The motion of spherical or near-spherical solid particles through a Newtonian fluid is investigated and a new method for closure of the drag force, using a Representative Unit Cell is discussed and compared to the existing models as well as to experimental data. The various drag models were also evaluated by numerical simulations, using an in-house developed program based on an adaptation of the SIMPLE procedure.  相似文献   

8.
Most engineering flows are still predicted by the conventional Reynolds-averaged Navier-Stokes method because of the low requirements of the computational quantities. However, the resolution capability of Reynolds-averaged Navier-Stokes models is still open to deliberation, especially in the recirculation and wake regions, where the vortical flows dominate. In the present work, an improved turbulence model derived from the original shear stress transport k-ω model is proposed and its superiority is assessed by our modeling the unsteady flows around a D-shaped cylinder and an open cavity, corresponding to two different Reynolds numbers. The results are compared with results from experiments and other turbulence models in terms of the flow morphology and mean velocity profiles. This shows that the predictive accuracy of the modified turbulence model is increased significantly in the bluff body wake flows and in the shear layer and separation flows of the cavity. Some special vortex structures can be captured in the open cavity, in which the secondary vortex emerging from the shear layer and the separation vortex near the trailing edge can induce large flow instability, and this phenomenon should be eliminated in engineering applications. It is believed that this improved turbulence model can be used for the more complex turbomachinery flows with better prediction of the hydrodynamic/aerodynamic performance and the unsteady vortical flows, which can provide some guidelines to design or optimize rotating machines.  相似文献   

9.
Multiphase flow phenomena are ubiquitous. Common examples include coupled atmosphere and ocean system (air and water), oil reservoir (water, oil, and gas), and cloud and fog (water vapor, water, and air). Multiphase flows also play an important role in many engineering and environmental science applications. In some applications such as flows in unconfined karst aquifers, karst oil reservoir, proton membrane exchange fuel cell, multiphase flows in conduits, and in porous media must be considered together. Geometric configurations that contain both conduit (or vug) and porous media are termed karstic geometry. Despite the importance of the subject, little work has been performed on multiphase flows in karstic geometry. In this paper, we present a family of phase–field (diffusive interface) models for two‐phase flow in karstic geometry. These models together with the associated interface boundary conditions are derived utilizing Onsager's extremum principle. The models derived enjoy physically important energy laws. A uniquely solvable numerical scheme that preserves the associated energy law is presented as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A complete classification is given of curves in the plane which contract homothetically when evolved according to a power of their curvature. Applications are given to the limiting behaviour of the flows in various situations.

  相似文献   


11.
Two and three-layer models of stratified flows in hydrostatic balance are studied. For the former, nonlinear transformations are found that map [ baroclinic ] two-layer flows with either rigid top and bottom lids or vertical periodicity, into [ barotropic ] single-layer, shallow water free-surface flows. We have previously shown that two-layer flows with Richardson number greater than one are nonlinearly stable, in the following sense: when the system is well-posed at a given time, it remains well-posed through the nonlinear evolution. Here, we give a general necessary condition for the nonlinear stability of systems of mixed type. For three-layer flows with vertical periodicity, the domains of local stability are determined and the system is shown not to satisfy the necessary condition for nonlinear stability. This means that there are wave-motions that evolve into shear unstable flows.  相似文献   

12.
This article is concerned with gradient flows in asymmetric metric spaces, that is, spaces with a topology induced by an asymmetric metric. Such an asymmetry appears naturally in many applications, e.g., in mathematical models for materials with hysteresis. A framework of asymmetric gradient flows is established under the assumption that the metric is weakly lower-semicontinuous in the second argument (and not necessarily on the first), and an existence theorem for gradient flows defined on an asymmetric metric space is given.  相似文献   

13.
Mathematical models of certain flows of fresh ground waters, in a semi-infinite pressurized water-bearing layer, to a salt water sea (basin, reservoir, pot hole, etc.), above the surface of which there is a layer of fresh water, are considered within the framework of the two-dimensional theory of steady seepage. To investigate them, mixed boundary-value problems in the theory of analytic functions are formulated and solved using Polubarinova-Kochina's method. On the basis of these models, algorithms are developed for calculating the squeezing out (that is, the process of the forcing out of the seeping fresh waters by the heavier salt waters, leading to deformation of the interface of the liquids) in cases when the ground water flows enter the sea from the side and from below. A detailed analysis of the structure and characteristic features of the processes, as well as of the effect of all the physical characteristics of the models on the nature and degree of the squeezing out of the fresh water, is carried out using the exact analytical relations obtained as well as numerical calculations. In the special case when there is no layer of fresh water above the surface of the sea, a comparison of the results of the calculation is given for both inflow schemes, and the nature of the dependences of the degree of squeezing out of the water from the initial position of contact of the liquids is discussed.  相似文献   

14.
In the present analysis, we study the steady mixed convection boundary layer flow of an incompressible Maxwell fluid near the two-dimensional stagnation-point flow over a vertical stretching surface. It is assumed that the stretching velocity and the surface temperature vary linearly with the distance from the stagnation-point. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. Analytical and numerical solutions of the derived system of equations are developed. The homotopy analysis method (HAM) and finite difference scheme are employed in constructing the analytical and numerical solutions, respectively. Comparison between the analytical and numerical solutions is given and found to be in excellent agreement. Both cases of assisting and opposing flows are considered. The influence of the various interesting parameters on the flow and heat transfer is analyzed and discussed through graphs in detail. The values of the local Nusselt number for different physical parameters are also tabulated. Comparison of the present results with known numerical results of viscous fluid is shown and a good agreement is observed.  相似文献   

15.
A squeeze flow of a viscoplastic fluid through a narrow clearance between two coaxial surfaces of revolution is considered. The problem is described by boundary-layer equations. With the use of the method of integral approaches, formulas for the pressure distribution are obtained. Generally, the flow of viscoplastic fluids given by the nonlinear Shulman model is considered. The flows of viscoplastic fluids given by the Herschel, Bulkley, Bingham, Ostwald-de Waele, and Newton models are discussed in detail. Numerical examples of pressure distributions in the clearance between parallel disks are presented.  相似文献   

16.
The process of designing new industrial products is in many cases solely based on the intuition and experience of the responsible design engineer. The aid of computers is restricted to visualization and manual manipulation tools. We demonstrate that the design process for conduits, which are made out of sheet metal plates, can be supported by mathematical optimization models and solution techniques, leading to challenging optimization problems. The design goal is to find a topology that consists of several channels with a given cross section area using a minimum amount of sheet metal and, at the same time, maximizing its stiffness. We consider a mixed integer linear programming model to describe the topology of two dimensional slices of a three dimensional sheet metal product. We give different model formulations, based on cuts and on multicommodity flows. Numerical results for various test instances are presented.  相似文献   

17.
We consider an abstract parameter dependent saddle-point problem and present a general framework for analyzing robust Schur complement preconditioners. The abstract analysis is applied to a generalized Stokes problem, which yields robustness of the Cahouet-Chabard preconditioner. Motivated by models for two-phase incompressible flows we consider a generalized Stokes interface problem. Application of the general theory results in a new Schur complement preconditioner for this class of problems. The robustness of this preconditioner with respect to several parameters is treated. Results of numerical experiments are given that illustrate robustness properties of the preconditioner.  相似文献   

18.
We introduce improved reduced-order models for turbulent flows. These models are inspired from successful methodologies used in large eddy simulation, such as artificial viscosity, applied to standard models created by proper orthogonal decomposition of flows coupled with Galerkin projection. As a first step in the analysis and testing of our new methodology, we use the Burgers equation with a small diffusion parameter. We present a thorough numerical analysis for the time discretization of the new models. We then test these models in two problems displaying shock-like phenomena. Of course, since the Burgers equation does not model turbulence, we next need to test our new models in realistic turbulent flow settings. This is the subject of a forthcoming report.  相似文献   

19.
Nonlocal mathematical models appear in various problems of physics and engineering. In these models the integral term may appear in the boundary conditions. In this paper the problem of solving the one‐dimensional parabolic partial differential equation subject to given initial and nonlocal boundary conditions is considered. These kinds of problems have certainly been one of the fastest growing areas in various application fields. The presence of an integral term in a boundary condition can greatly complicate the application of standard numerical techniques. As a well‐known class of meshless methods, the radial basis functions are used for finding an approximation of the solution of the present problem. Numerical examples are given at the end of the paper to compare the efficiency of the radial basis functions with famous finite‐difference methods. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

20.
We discuss differences in mathematical representations of the physical and mental worlds. Following Aristotle, we present the mental space as discrete, hierarchic, and totally disconnected topological space. One of the basic models of such spaces is given by ultrametric spaces and more specially by m-adic trees. We use dynamical systems in such spaces to model flows of unconscious information at different level of mental representation hierarchy, for “mental points”, categories, and ideas. Our model can be interpreted as an unconventional computational model: non-algorithmic hierarchic “computations” (identified with the process of thinking at the unconscious level).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号